Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KÉPEŠ, E.; VRÁBEL, J.; ADAMOVSKÝ, O.; STŘÍTEŽSKÁ, S.; MODLITBOVÁ, P.; POŘÍZKA, P.; KAISER, J.
Originální název
Interpreting support vector machines applied in laser-induced breakdown spectroscopy
Anglický název
Druh
Článek WoS
Originální abstrakt
Laser-induced breakdown spectroscopy is often combined with a multivariate black box model—such as support vector machines (SVMs)—to obtain desirable quantitative or qualitative results. This approach carries obvious risks when practiced in high-stakes applications. Moreover, the lack of understanding of a black-box model limits the user's ability to fine-tune the model. Thus, here we present four approaches to interpret SVMs through investigating which features the models consider important in the classification task of 19 algal and cyanobacterial species. The four feature importance metrics are compared with popular approaches to feature selection for optimal SVM performance. We report that the distinct feature importance metrics yield complementary and often comparable information. In addition, we identify our SVM model's bias towards features with a large variance, even though these features exhibit a significant overlap between classes. We also show that the linear and radial basis kernel SVMs weight the same features to the same degree.
Anglický abstrakt
Klíčová slova
LIBS, Classification, Feature importance, SVM, Interpretable machine learning
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
01.02.2022
ISSN
1873-4324
Periodikum
Analytica Chimica Acta
Svazek
1192
Číslo
339352
Stát
Nizozemsko
Strany od
1
Strany do
12
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0003267021011788#appsec1
BibTex
@article{BUT175287, author="Erik {Képeš} and Jakub {Vrábel} and Ondřej {Adamovský} and Sára {Střítežská} and Pavlína {Modlitbová} and Pavel {Pořízka} and Jozef {Kaiser}", title="Interpreting support vector machines applied in laser-induced breakdown spectroscopy", journal="Analytica Chimica Acta", year="2022", volume="1192", number="339352", pages="1--12", doi="10.1016/j.aca.2021.339352", issn="0003-2670", url="https://www.sciencedirect.com/science/article/pii/S0003267021011788#appsec1" }