Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KÉPEŠ, E.; VRÁBEL, J.; POŘÍZKA, P.; KAISER, J.
Originální název
Opening black-box models used in LIBS
Anglický název
Druh
Abstrakt
Originální abstrakt
The use of multivariate data-based models has become synonymous with modern LIBS analysis, be it qualitative or quantitative [1]. Two of such techniques frequently found in the LIBS literature are support vector machines (SVM) and artificial neural networks, namely convolutional neural networks (CNNs). While both techniques have undoubtedly contributed to achieving state-of-the-art classification performance in several LIBS applications, there is a common drawback associated with both methods, namely their black-box nature. In this work, we carried out the post-hoc interpretation of SVM and CNN models trained for a classification task. SVM classifiers were interpreted via the determination of feature importances [2]. The CNNs were interpreted by finding the optimal input spectra that maximize the activation of individual convolutional neurons and by carrying out class activation maximization [3]. The latter technique finds the input spectra that best represent the classes learnt by the network. We found that both classification machine learning techniques are capable of learning meaningful spectroscopic features.
Anglický abstrakt
Klíčová slova
machine learning, interpretability, support vector machines, spectroscopic data, convolutional neural networks
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
24.08.2021
BibTex
@misc{BUT175286, author="Erik {Képeš} and Jakub {Vrábel} and Pavel {Pořízka} and Jozef {Kaiser}", title="Opening black-box models used in LIBS", year="2021", note="Abstract" }