Detail předmětu

Soft Computing

FIT-SFCAk. rok: 2019/2020

Soft computing je zastřešující název (který nemá použitelný český překlad) pro netradiční technologie, resp. přístupy k řešení obtížných problémů. Obsah předmětu je ve shodě s významem jeho názvu následující: Tolerance pro nepřesnost a neurčitost jako základní atributy teorií soft-computing. Neuronové sítě. Fuzzy logika. Optimalizační algoritmy inspirované přírodou. Pravděpodobnostní usuzování. Hrubé množiny. Chaos.  Hybridní přístupy (kombinace neuronových sítí, fuzzy logiky a genetických algoritmů) .

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

  • Studenti se seznámí se základními typy neuronových sítí a jejich aplikacemi.
  • Studenti se seznámí se základy teorie fuzzy množin a fuzzy logiky včetně návrhu fuzzy regulátoru.
  • Studenti se seznámí s optimalizačními algoritmy inspirovanými přírodou.
  • Studenti se seznámí s problematikou pravděpodobnostního usuzování.
  • Studenti se seznámí se základy teorie hrubých množin a s použitím těchto množin při dolování znalostí z databází.  
  • Studenti se seznámí se základy teorie chaosu.

  • Studenti se naučí odborné terminologii z oblasti soft-computing, a to jak v českém, tak i anglickém jazyce.
  • Studenti si uvědomí důležitost tolerance nepřesnosti a neurčitosti pro konstrukci robustních a levných inteligentních zařízení.

Prerekvizity

  • Programování v jazycích C++ nebo Java.
  • Základní znalosti z diferenciálního počtu a teorie pravděpodobnosti.

Způsob a kritéria hodnocení

  • Půlsemestrální písemný test - 15 bodů.
  • Projekt - 30 bodů.
  • Závěrečná písemná zkouška - 55 bodů, minimálně však 25 bodů. Pro získání bodů ze závěrečné písemné zkoušky je nutné zkoušku vypracovat tak, aby byla hodnocena nejméně 25 body (v opačném případě bude zkouška hodnocena 0 body).

Podmínky zápočtu:
Nejméně 20 bodů získaných v průběhu semestru (za půlsemestrální test a projekt).

Učební cíle

Seznámit studenty se základy teorií soft-computing, tj. se základy teorií netradičních technologií a přístupů k řešení obtížných problémů reálného světa.

Základní literatura

Kriesel, D.: A Brief Introduction to Neural Networks, 2005, Fundamentals of the New Artificial Intelligence, Springer-Verlag New York, Inc., 2008. ISBN 978-1-84628-838-8 
Rutkowski, L.: Flexible Neuro-Fuzzy Systems, Kluwer Academic Publishers, 2004, ISBN 1-4020-8042-5
Russel,S., Norvig,P.: Artificial Intelligence, Prentice-Hall, Inc., third edition 2010, ISBN 0-13-604259-7

Doporučená literatura

Kriesel, D.: A Brief Introduction to Neural Networks, 2005, http://www.dkriesel.com/en/science/neural_networks
Rutkowski, L.: Flexible Neuro-Fuzzy Systems, Kluwer Academic Publishers, 2004, ISBN 1-4020-8042-5
Graube, D.: Principles of Artificial Neural networks, World Scientific Publishing Co. Pte. Ltd., third edition, 2013
Shi, Z.: Advanced Artificial Intelligence, World Scientific Publishing Co. Pte. Ltd., 2011, ISBN-13 978-981-4291-34-7
Munakata, T.: Fundamentals of the New Artificial Intelligence, Springer-Verlag New York, Inc., 2008, ISBN 978-1-84628-838-8
Russell, S., Norvig, P.: Artificial Intelligence, Prentice-Hall, Inc., third edition 2010, ISBN 0-13-604259-7
Kruse, R., Borgelt, Ch., Braune, Ch., Mostaghim, S., Steinbrecher, M.: Computational Intelligence, Springer, second edition 2016, ISBN 978-1-4471-7296-3

Zařazení předmětu ve studijních plánech

  • Program IT-MGR-2 magisterský navazující

    obor MMI , 0 ročník, zimní semestr, volitelný
    obor MBI , 2 ročník, zimní semestr, povinný
    obor MSK , 0 ročník, zimní semestr, volitelný
    obor MMM , 0 ročník, zimní semestr, povinně volitelný
    obor MBS , 0 ročník, zimní semestr, volitelný
    obor MPV , 0 ročník, zimní semestr, povinně volitelný
    obor MIS , 0 ročník, zimní semestr, volitelný
    obor MIN , 1 ročník, zimní semestr, povinný
    obor MGM , 0 ročník, zimní semestr, volitelný

  • Program MITAI magisterský navazující

    specializace NMAL , 0 ročník, zimní semestr, povinný
    specializace NIDE , 0 ročník, zimní semestr, povinný
    specializace NBIO , 0 ročník, zimní semestr, volitelný
    specializace NSEN , 0 ročník, zimní semestr, volitelný
    specializace NVIZ , 0 ročník, zimní semestr, volitelný
    specializace NGRI , 0 ročník, zimní semestr, volitelný
    specializace NISD , 0 ročník, zimní semestr, volitelný
    specializace NSEC , 0 ročník, zimní semestr, volitelný
    specializace NCPS , 0 ročník, zimní semestr, volitelný
    specializace NHPC , 0 ročník, zimní semestr, volitelný
    specializace NNET , 0 ročník, zimní semestr, volitelný
    specializace NVER , 0 ročník, zimní semestr, volitelný
    specializace NEMB , 0 ročník, zimní semestr, volitelný
    specializace NSPE , 0 ročník, zimní semestr, volitelný
    specializace NADE , 0 ročník, zimní semestr, volitelný
    specializace NMAT , 0 ročník, zimní semestr, volitelný
    specializace NISY , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Úvod. Biologický a umělý neuron, umělé neuronové sítě.
  2. Acyklické a dopředné neuronové sítě, algoritmus backpropagation.  
  3. Neuronové sítě s RBF neurony. Soutěživé sítě.
  4. Neocognitron a konvoluční neuronové sítě.
  5. Rekurentní sítě (Hopfieldova síť, Boltzmannův stroj).
  6. Rekurentní sítě (LSTM, GRU).
  7. Genetické algoritmy. 
  8. Optimalizační algoritmy inspirované přírodou.
  9. Fuzzy množiny a fuzzy logika.  
  10. Pravděpodobnostní usuzování, Bayesovské sítě.
  11. Hrubé množiny.
  12. Chaos.
  13. Hybridní přístupy (neuronové sítě, fuzzy logika, genetické algoritmy).

Projekt

26 hod., povinná

Vyučující / Lektor

Osnova

Individuální projekt - řešení konkrétního problému (klasifikace, optimalizace, asociace, řízení).