Kůdela z FSI boří mýty o srovnávání evolučních algoritmů. Článek otiskl Nature
Poukázat na systémovou chybu ve vlastním oboru se rozhodl Jakub Kůdela z Fakulty strojního inženýrství VUT v Brně. Odborník na optimalizační modely a algoritmy si před rokem všiml zásadního problému při srovnávání a analýze takzvaných evolučních algoritmů. A zjistil, proč i zdánlivě správné algoritmy ve skutečnosti nefungují, jak mají. Odborný článek na toto téma mu nyní otiskl prestižní časopis z „rodiny“ Nature, konkrétně Nature Machine Intelligence.
V případě starší, ale stále hojně využívané sady pro zmíněný benchmarking, zůstala historicky skupina úloh, pro které je optimální nastavit hledané parametry na nulu. „Což dobře fungujícím algoritmům nevadí, pracují stejně, i když úlohu z nuly posunete jinam. Ale jiné mají tendenci hledat optimum právě v nule. Nazývám to „zero-bias“: na prostoru, který v rámci řešení prohledávají, jsou vedené k nule. A takovéto algoritmy pak v praxi nefungují, jak mají. Problém je, že když používáte starší sadu pro benchmarking, ty dobré a špatné od sebe těžko rozeznáte, protože na první pohled nevidíte, jakou cestou algoritmus dospěl k výsledku,“ vysvětluje Kůdela.
V důsledku pak zjistil, že řada nových metod a na nich stojících výzkumů publikovaných v respektovaných časopisech, obsahuje zásadní chybu. „Za poslední tři roky popisuji hned sedm metod, které tuto chybu obsahují,“ upřesňuje Kůdela a je si vědom, že tím řadě kolegů z oboru boří pomyslný domeček z karet. „Nicméně právě proto svůj jsem článek napsal. Doufám, že to změní způsob, jakým se tyto metody ověřují a vyvíjejí. A třeba to i zredukuje jejich počet pouze na ty skutečné funkční,“ dodává.
Článek „A critical problem in benchmarking and analysis of evolutionary computation methods“ najdete v plném znění na https://rdcu.be/c1tmf.
Autor | Mgr. Iveta Hovorková |
---|---|
Publikováno | |
Odkaz | https://www.vut.cz/vut/f19528/d235190 |