Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ČERNÝ, M.; ŠESTÁK, P.; POKLUDA, J.
Originální název
Strength of bcc crystals under combined shear and axial loading from first principles
Anglický název
Druh
Článek WoS
Originální abstrakt
Ab initio simulations of uniaxial tensile and compressive loading in <110> direction, <111>{110} shear and their superposition in six perfect crystals of bcc metals are performed using a plane wave code working within the framework of density functional theory. Under uniaxial compression, the crystal lattice transforms along an orthorhombic path that connects two bcc states and goes through one or two states of tetragonal symmetry. Such structural transformations determine compressive strengths of bcc crystals. On the other hand, reaching the maximum tensile stress coincides with vanishing of the shear strength in lattice planes perpendicular to the loading axis. The theoretical shear strength is found to be a decreasing (increasing) function of the applied tensile (compressive) normal stress in most studied cases. One of potential applications of this particular result is a prediction of shear instabilities in crystal lattices during tensile tests. Estimated critical tensile stresses related to shear instabilities in Mo and W under <110> tension are lower than the computed maximum tensile stresses and somewhat higher than experimental values.
Anglický abstrakt
Klíčová slova
theoretical strength, shear and compression, stress superposition, structural transformation, bcc metals, ab initio calculations
Klíčová slova v angličtině
Autoři
Rok RIV
2013
Vydáno
01.04.2012
ISSN
0927-0256
Periodikum
COMPUTATIONAL MATERIALS SCIENCE
Svazek
55
Číslo
1
Stát
Nizozemsko
Strany od
337
Strany do
343
Strany počet
7
BibTex
@article{BUT75173, author="Miroslav {Černý} and Petr {Šesták} and Jaroslav {Pokluda}", title="Strength of bcc crystals under combined shear and axial loading from first principles", journal="COMPUTATIONAL MATERIALS SCIENCE", year="2012", volume="55", number="1", pages="337--343", issn="0927-0256" }