Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
JANKOVÁ, Z.
Originální název
Literature Review of Fundamental and Technical Indicators Prediction of Financial Market Using Artificial Intelligence Technique
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
The stock market plays a key role in national economies. The goal of every investor is to maximize the return and minimize the risk arising from the investment. As a result, many studies have been conducted to predict stock market developments using indicators derived from classical stock market analyzes - fundamental and technical through methods and means of artificial intelligence and others. This study attempted to conduct a systematic and critical literature review of 40 articles and contributions from relevant research and scientific papers indexed in world databases. The results revealed the most common fundamental and technical indicators that serve as inputs to artificial intelligence models with a focus on fuzzy logic, neural networks or hybrid models.
Anglický abstrakt
Klíčová slova
artificial intelligence; fuzzy logic; fundamental analysis; hybrid system; neural networks; stock market; technical analysis
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
02.11.2020
Nakladatel
Tomas Bata University of Zlin
Místo
Zlin, Czech Republic
ISBN
9788074549359
Kniha
Conference Proceedings DOKBAT 16th Annual International Bata Conference for Ph.D. Students and Young Researchers
Edice
16
Strany od
242
Strany do
254
Strany počet
14
BibTex
@inproceedings{BUT165801, author="Zuzana {Janková}", title="Literature Review of Fundamental and Technical Indicators Prediction of Financial Market Using Artificial Intelligence Technique", booktitle="Conference Proceedings DOKBAT 16th Annual International Bata Conference for Ph.D. Students and Young Researchers", year="2020", series="16", number="1", pages="242--254", publisher="Tomas Bata University of Zlin", address="Zlin, Czech Republic", doi="10.7441/dokbat.2020.21", isbn="9788074549359" }