Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
NOVÁK, L.; NOVÁK, D.
Originální název
On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables dagger
Anglický název
Druh
Článek WoS
Originální abstrakt
The paper is focused on Taylor series expansion for statistical analysis of functions of random variables with special attention to correlated input random variables. It is shown that the standard approach leads to significant deviations in estimated variance of non-linear functions. Moreover, input random variables are often correlated in industrial applications; thus, it is crucial to obtain accurate estimations of partial derivatives by a numerical differencing scheme. Therefore, a novel methodology for construction of Taylor series expansion of increasing complexity of differencing schemes is proposed and applied on several analytical examples. The methodology is adapted for engineering applications by proposed asymmetric difference quotients in combination with a specific step-size parameter. It is shown that proposed differencing schemes are suitable for functions of correlated random variables. Finally, the accuracy, efficiency, and limitations of the proposed methodology are discussed.
Anglický abstrakt
Klíčová slova
Taylor series expansion; estimation of coefficient of variation; semi-probabilistic approach; structural reliability
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
31.08.2020
Nakladatel
MDPI
Místo
BASEL
ISSN
2073-8994
Periodikum
Symmetry-Basel
Svazek
12
Číslo
8
Stát
Švýcarská konfederace
Strany od
1
Strany do
14
Strany počet
URL
https://www.mdpi.com/2073-8994/12/8/1379
Plný text v Digitální knihovně
http://hdl.handle.net/11012/195719
BibTex
@article{BUT165296, author="Lukáš {Novák} and Drahomír {Novák}", title="On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables dagger", journal="Symmetry-Basel", year="2020", volume="12", number="8", pages="1--14", doi="10.3390/sym12081379", url="https://www.mdpi.com/2073-8994/12/8/1379" }
Dokumenty
symmetry-12-01379-v3