Detail publikace

Production of sulphides in denitrifying woodchip bioreactors

MALÁ, J. HRICH, K. SCHRIMPELOVÁ, K. BÍLKOVÁ, Z.

Originální název

Production of sulphides in denitrifying woodchip bioreactors

Anglický název

Production of sulphides in denitrifying woodchip bioreactors

Jazyk

en

Originální abstrakt

Denitrifying woodchip bioreactors, natural treatment systems used for the reduction of nitrates in agricultural runoff or groundwater, may cause adverse side effects within receiving waters. One of the least studied but nonetheless still serious issues is the production of hydrogen sulphide, which occurs in bioreactors under operating conditions favourable to its creation. The aim of this paper is to elucidate the effect of process parameters on the production of sulphides and the proportion of hydrogen sulphide in a 1-year-long experimental study with four laboratory-scale denitrifying bioreactors. During the study, the strong dependence of sulphate reduction and the production of sulphides on the effluent oxidation-reduction potential (ORP) and nitrate-nitrogen (NO3-N) concentrations of bioreactors became evident. Sulphide formation occurred at concurrent effluent NO3-N concentrations below 3 mg/L and ORPs lower than - 100 mV. The tested hydraulic retention time of 1.7 days was sufficiently long to achieve these conditions. At an effluent pH of 7 or lower, the majority of the total sulphides present were in the form of hydrogen sulphide. It is suggested that in order to avoid the production of hydrogen sulphide, the production of total sulphides has to be minimised.

Anglický abstrakt

Denitrifying woodchip bioreactors, natural treatment systems used for the reduction of nitrates in agricultural runoff or groundwater, may cause adverse side effects within receiving waters. One of the least studied but nonetheless still serious issues is the production of hydrogen sulphide, which occurs in bioreactors under operating conditions favourable to its creation. The aim of this paper is to elucidate the effect of process parameters on the production of sulphides and the proportion of hydrogen sulphide in a 1-year-long experimental study with four laboratory-scale denitrifying bioreactors. During the study, the strong dependence of sulphate reduction and the production of sulphides on the effluent oxidation-reduction potential (ORP) and nitrate-nitrogen (NO3-N) concentrations of bioreactors became evident. Sulphide formation occurred at concurrent effluent NO3-N concentrations below 3 mg/L and ORPs lower than - 100 mV. The tested hydraulic retention time of 1.7 days was sufficiently long to achieve these conditions. At an effluent pH of 7 or lower, the majority of the total sulphides present were in the form of hydrogen sulphide. It is suggested that in order to avoid the production of hydrogen sulphide, the production of total sulphides has to be minimised.

Dokumenty

BibTex


@article{BUT164600,
  author="Jitka {Malá} and Karel {Hrich} and Kateřina {Schrimpelová} and Zuzana {Bílková}",
  title="Production of sulphides in denitrifying woodchip bioreactors",
  annote="Denitrifying woodchip bioreactors, natural treatment systems used for the reduction of nitrates in agricultural runoff or groundwater, may cause adverse side effects within receiving waters. One of the least studied but nonetheless still serious issues is the production of hydrogen sulphide, which occurs in bioreactors under operating conditions favourable to its creation. The aim of this paper is to elucidate the effect of process parameters on the production of sulphides and the proportion of hydrogen sulphide in a 1-year-long experimental study with four laboratory-scale denitrifying bioreactors. During the study, the strong dependence of sulphate reduction and the production of sulphides on the effluent oxidation-reduction potential (ORP) and nitrate-nitrogen (NO3-N) concentrations of bioreactors became evident. Sulphide formation occurred at concurrent effluent NO3-N concentrations below 3 mg/L and ORPs lower than - 100 mV. The tested hydraulic retention time of 1.7 days was sufficiently long to achieve these conditions. At an effluent pH of 7 or lower, the majority of the total sulphides present were in the form of hydrogen sulphide. It is suggested that in order to avoid the production of hydrogen sulphide, the production of total sulphides has to be minimised.",
  address="SPRINGER HEIDELBERG",
  chapter="164600",
  doi="10.1007/s11356-020-10089-4",
  howpublished="online",
  institution="SPRINGER HEIDELBERG",
  number="32",
  volume="27",
  year="2020",
  month="july",
  pages="40769--40776",
  publisher="SPRINGER HEIDELBERG",
  type="journal article in Web of Science"
}