Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KISELA, T.; ČERMÁK, J.
Originální název
Delay-dependent stability switches in fractional differential equations
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper discusses stability properties of a linear fractional delay differential system involving both delayed as well as non-delayed terms. As a main result, the explicit stability dependence on a changing time delay is described, including conditions for the appearance, number and exact calculations of stability switches for this system when its stability property turns into instability and vice versa in view of a monotonically increasing lag. Some supporting asymptotic results are stated as well. The proof technique is based on analysis of the generalized delay exponential function of the Mittag-Leffler type combined with D-decomposition method. The obtained results are illustrated via a fractional Lotka-Volterra population model and applied to a stabilization problem of the control theory.
Anglický abstrakt
Klíčová slova
Fractional delay differential equation; Stability switch; Asymptotic behaviour; Stabilization
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
01.12.2019
Nakladatel
Elsevier
Místo
RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
ISSN
1007-5704
Periodikum
Communications in Nonlinear Science and Numerical Simulation
Svazek
79
Číslo
1
Stát
Nizozemsko
Strany od
Strany do
19
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S1007570419302102
BibTex
@article{BUT159358, author="Tomáš {Kisela} and Jan {Čermák}", title="Delay-dependent stability switches in fractional differential equations", journal="Communications in Nonlinear Science and Numerical Simulation", year="2019", volume="79", number="1", pages="1--19", doi="10.1016/j.cnsns.2019.104888", issn="1007-5704", url="https://www.sciencedirect.com/science/article/pii/S1007570419302102" }