Detail publikačního výsledku

Unique solvability of the Darboux problem for linear hyperbolic functional differential equations

ŠREMR, J.

Originální název

Unique solvability of the Darboux problem for linear hyperbolic functional differential equations

Anglický název

Unique solvability of the Darboux problem for linear hyperbolic functional differential equations

Druh

Článek WoS

Originální abstrakt

We obtain new conditions sufficient for the unique solvability of the Darboux problem for linear partial functional differential equations of hyperbolic type. The main results are applied to the hyperbolic differential equations with argument deviations.

Anglický abstrakt

We obtain new conditions sufficient for the unique solvability of the Darboux problem for linear partial functional differential equations of hyperbolic type. The main results are applied to the hyperbolic differential equations with argument deviations.

Klíčová slova

Linear functional differential equation of hyperbolic type; Darboux problem; solvability,uniqueness

Klíčová slova v angličtině

Linear functional differential equation of hyperbolic type; Darboux problem; solvability,uniqueness

Autoři

ŠREMR, J.

Rok RIV

2018

Vydáno

01.03.2017

ISSN

1072-947X

Periodikum

Georgian Mathematical Journal

Svazek

24

Číslo

1

Stát

Spolková republika Německo

Strany od

149

Strany do

167

Strany počet

18

BibTex

@article{BUT134463,
  author="Jiří {Šremr}",
  title="Unique solvability of the Darboux problem for linear hyperbolic functional differential equations",
  journal="Georgian Mathematical Journal",
  year="2017",
  volume="24",
  number="1",
  pages="149--167",
  doi="10.1515/gmj-2016-0079",
  issn="1072-947X"
}