Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.; KHUSAINOV, D.; SHATYRKO, A.; BAŠTINEC, J.; SVOBODA, Z.
Originální název
Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
Anglický název
Druh
Článek WoS
Originální abstrakt
The paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.
Anglický abstrakt
Klíčová slova
Absolute stability; exponential stability; neutral differential system; Lurie type nonlinearity
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
01.01.2022
Nakladatel
De Gruyter
ISSN
2191-950X
Periodikum
Advances in Nonlinear Analysis
Svazek
11
Číslo
1
Stát
Spolková republika Německo
Strany od
726
Strany do
740
Strany počet
15
URL
https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html
Plný text v Digitální knihovně
http://hdl.handle.net/11012/203988
BibTex
@article{BUT175471, author="Josef {Diblík} and Denys Ya. {Khusainov} and Andrej {Shatyrko} and Jaromír {Baštinec} and Zdeněk {Svoboda}", title="Absolute Stability of Neutral Systems with Lurie Type Nonlinearity", journal="Advances in Nonlinear Analysis", year="2022", volume="11", number="1", pages="726--740", doi="10.1515/anona-2021-0216", issn="2191-9496", url="https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html" }
Dokumenty
10.1515_anona-2021-0216