Detail publikačního výsledku

Positive solutions of a discrete equation

BAŠTINEC, J.; DIBLÍK, J.

Originální název

Positive solutions of a discrete equation

Anglický název

Positive solutions of a discrete equation

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

In the paper we study a class of linear discrete delayed equations with perturbations. Boundaries of perturbations guaranteeing the existence of a positive solution or a bounded vanishing solution of perturbed linear discrete delayed equation are given. In proofs of main results the discrete variant of Wazewski's topological method and method of asymptotic decompositions are utilized.

Anglický abstrakt

In the paper we study a class of linear discrete delayed equations with perturbations. Boundaries of perturbations guaranteeing the existence of a positive solution or a bounded vanishing solution of perturbed linear discrete delayed equation are given. In proofs of main results the discrete variant of Wazewski's topological method and method of asymptotic decompositions are utilized.

Klíčová slova

linear discrete delayed equation, perturbation, positive solution, bounded solution, Wazewski's topological method, asymptotic decomposition.

Klíčová slova v angličtině

linear discrete delayed equation, perturbation, positive solution, bounded solution, Wazewski's topological method, asymptotic decomposition.

Autoři

BAŠTINEC, J.; DIBLÍK, J.

Rok RIV

2018

Vydáno

15.06.2017

Nakladatel

Univerzita obrany

Místo

Brno

ISBN

978-80-7231-417-1

Kniha

Matematika, informační technologie a aplikované vědy

Strany od

1

Strany do

13

Strany počet

13

URL

BibTex

@inproceedings{BUT137281,
  author="Jaromír {Baštinec} and Josef {Diblík}",
  title="Positive solutions of a discrete equation",
  booktitle="Matematika, informační technologie a aplikované vědy",
  year="2017",
  number="1",
  pages="1--13",
  publisher="Univerzita obrany",
  address="Brno",
  isbn="978-80-7231-417-1",
  url="http://mitav.unob.cz"
}