Detail publikačního výsledku

Neighborhood spaces and convergence

ŠLAPAL, J.; RICHMOND, T.

Originální název

Neighborhood spaces and convergence

Anglický název

Neighborhood spaces and convergence

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

We study neighborhood spaces $(X, \nu)$ in which the system $\nu(x)$ of neighborhoods at a point $x \in X$ is a system of subsets of$X$ containing $x$ which need not be a filter, but must only be astack, i.e., closed under the formation of supersets. We investigatecontinuity, separation, compactness, and convergence of centeredstacks in this setting.

Anglický abstrakt

We study neighborhood spaces $(X, \nu)$ in which the system $\nu(x)$ of neighborhoods at a point $x \in X$ is a system of subsets of$X$ containing $x$ which need not be a filter, but must only be astack, i.e., closed under the formation of supersets. We investigatecontinuity, separation, compactness, and convergence of centeredstacks in this setting.

Klíčová slova

Raster, neighborhood space, continuous map, separation, compactness, convergence}

Klíčová slova v angličtině

Raster, neighborhood space, continuous map, separation, compactness, convergence}

Autoři

ŠLAPAL, J.; RICHMOND, T.

Rok RIV

2010

Vydáno

01.02.2010

Nakladatel

Auburn University

Místo

Nippising

ISSN

0146-4124

Periodikum

Topology Proceedings

Svazek

35

Číslo

1

Stát

Spojené státy americké

Strany od

165

Strany do

175

Strany počet

11

BibTex

@article{BUT48908,
  author="Josef {Šlapal} and Tom {Richmond}",
  title="Neighborhood spaces and convergence",
  journal="Topology Proceedings",
  year="2010",
  volume="35",
  number="1",
  pages="165--175",
  issn="0146-4124"
}