Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Aviso, K.B., Capili, M.J., Chin, H.H., Fan, Y.V., Klemeš, J.J., Tan, R.R.
Originální název
Detecting Patterns in Energy Use and Greenhouse Gas Emissions of Cities Using Machine Learning
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
Cities are expected to play a major role in managing climate change in the coming decades. The actual environmental performance of urban centres is difficult to predict due to the complex interplay of technologies and infrastructure with social, economic, and political factors. Machine learning (ML) techniques can be used to detect patterns in high-level city data to determine factors that influence favourable climate performance. In this work, rough set-based ML (RSML) is used to identify such patterns in the Sustainable Cities Index (SCI), which ranks 100 of the world's major urban centres based on three broad criteria that cover social, environmental, and economic dimensions. These main criteria are further broken down into 18 detailed criteria that are used to calculate the aggregate SCI scores of the listed cities. Two of the environmental criteria measure energy intensity and greenhouse gas (GHG) emissions. RSML is used to generate interpretable rule-based (if/then) models that predict energy utilisation and GHG emissions performance of cities based on the other criteria in the database. Attribute reduction techniques are used to identify a set of 7 non-redundant criteria for energy use and 9 non-redundant criteria for GHG emissions; 6 criteria are common to these two sets. Then, RSML is used to generate rule-based models. A 10-rule model is determined for energy intensity, while an 11-rule model is found for GHG emissions. Both models were reduced further by eliminating rules with weak generalisation capability. A key insight from the rule-based models is that social, environmental, and economic attributes are associated with energy intensity and GHG emissions due to indirect effects. © 2021, AIDIC Servizi S.r.l.
Klíčová slova
detecting; patterns; energy; greenhouse; gas emissions; cities; machine learning
Autoři
Vydáno
15. 11. 2021
Nakladatel
Italian Association of Chemical Engineering - AIDIC
ISSN
2283-9216
Periodikum
Chemical Engineering Transactions
Číslo
88
Stát
Italská republika
Strany od
403
Strany do
408
Strany počet
6
URL
http://www.cetjournal.it/cet/21/88/067.pdf
BibTex
@article{BUT175945, author="Hon Huin {Chin} and Yee Van {Fan} and Jiří {Klemeš}", title="Detecting Patterns in Energy Use and Greenhouse Gas Emissions of Cities Using Machine Learning", journal="Chemical Engineering Transactions", year="2021", number="88", pages="403--408", doi="10.3303/CET2188067", issn="2283-9216", url="http://www.cetjournal.it/cet/21/88/067.pdf" }