study programme

Teleinformatics

Original title in Czech: TeleinformatikaFaculty: FEECAbbreviation: DPC-TLIAcad. year: 2023/2024

Type of study programme: Doctoral

Study programme code: P0714D060011

Degree awarded: Ph.D.

Language of instruction: Czech

Accreditation: 28.5.2019 - 27.5.2029

Mode of study

Full-time study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering Without thematic area 100

Study aims

The student is fostered to use the theoretical knowledge and experience gained through own research activities in an innovative manner. He is able to efficiently use the gathered knowledge for the design of own and prospective solutions within their further experimental development and applied research. The emphasis is put on gaining both theoretical and practical skill, ability of self-decisions, definition of research and development hypotheses to propose projects spanning from basic to applied research, ability to evaluation of the results and their dissemination as research papers and presentation in front of the research community.

Graduate profile

The doctor study program "Teleinformatics" aims to generate top research and development specialists, who have deep knowledge of principles and techniques used in communication and data wired and wireless networks and also in related areas and also in data/signal acquisition, processing and the back representation of user data on the level of application layer. The main parts of the studies are represented by areas dealing with information theory and communication techniques. The graduate has deep knowledge in communication and information technologies, data transfer and their security. The graduate is skilled in operation systems, computer languages and database systems, their usage and also design of suitable software and user applications. The graduate is able to propose new technology solution of communication tools and information systems for advanced transfer of information.

Profession characteristics

Graduates of the program "Teleinformatics" apply in particular in research, development and design teams, in the field of professional activity in production or business organizations, in the academic sphere and in other institutions involved in science, research, development and innovation, in all areas of the company where communication systems and information transfer through data networks are being applied and used.
Our graduates are particularly experienced in the analysis, design, creation or management of complex systems aimed for data transfer and processing, as well as in the programming, integration, support, maintenance or sale of these systems.

Fulfilment criteria

Doctoral studies are carried out according to the individual study plan, which will prepare the doctoral student in cooperation with the doctoral student at the beginning of the study. The individual study plan specifies all the duties stipulated in accordance with the BUT Study and Examination Rules, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are time-bound throughout the study period, they are scored and fixed at fixed deadlines. The student enrolls and performs tests of compulsory courses, at least two obligatory elective subjects with regard to the focus of his dissertation, and at least two elective courses (English for PhD students, Solutions for Innovative Entries, Scientific Publishing from A to Z).
The student may enroll for the state doctoral exam only after all the tests prescribed by his / her individual study plan have been completed. Before the state doctoral exam, the student prepares a dissertation thesis describing in detail the goals of the thesis, a thorough evaluation of the state of knowledge in the area of ​​the dissertation solved, or the characteristics of the methods it intends to apply in the solution. The defense of the controversy that is opposed is part of the state doctoral exam. In the next part of the exam the student must demonstrate deep theoretical and practical knowledge in the field of microelectronics, electrotechnology, materials physics, nanotechnology, electrical engineering, electronics, circuit theory. The State Doctoral Examination is in oral form and, in addition to the discussion on the dissertation thesis, it also consists of thematic areas related to compulsory and compulsory elective subjects.
To defend the dissertation, the student reports after the state doctoral examination and after fulfilling conditions for termination, such as participation in teaching, scientific and professional activity (creative activity) and at least a monthly study or work placement at a foreign institution or participation in an international creative project .

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

1. round (applications submitted from 01.04.2023 to 30.04.2023)

  1. Energy Management and Optimization in Buildings with Regard to Renewable Energy Sources and Electromobility

    The legacy concept of the electricity distribution considered centrally controlled electricity production and the unknown consumption. With the increase in the share of smaller, especially renewable sources, where the production is highly fluctioating and unpredictable (threatening the network stability), the need arises for a new concept of managing energy networks with optimization botn on the production side and on the consumption side. The concept of such a networks is called “SmartGrids” and is based on digitalization and full automation of network management, on secured two-way communication between the production sources, distribution network and consumers, and on the possibility of greater decentralization of the network by involving renewable energy sources. The aim of this dissertation thesis is in the first phase familiarize with the functioning and solutions of elements of production and consumption, e.g., inverter, battery, charging station, water heating, heat pump, etc. Then, study of communication protocols for building management. A test polygon will be constructed for a detailed understanding of the principles of communication in smart buildings (in SmartGrids in general). It will enable to connect elements of energy consumption and production from different manufacturers to the polygon. The core of the polygon will be the communication unit (gateway). In the second phase, the definition of requirements for energy management from the point of view of energy will be approached for the subsequent optimization. A seris of initial measurements will be carried out and a subsequent design of a scheme for energy optimization including the communication unit and the entire polygon (can represent a family house, apartment building, production halls or other spaces). On the basis of the obtained data, energy optimization will be carried out using newly designed algorithms including elements of artificial intelligence and communication technologies (protocols) of next-generation networks. The actual evaluation will take place in the unique laboratories UniLab and RICAIP at BUT and CEITEC, respectively. Also, the student will use the already established international cooperation with industry companies and universities.

    Supervisor: Číka Petr, doc. Ing., Ph.D.

  2. Optical fiber infrastructure security

    Fiber optic networks have evolved rapidly in recent years to meet the ever-increasing demand for increasing capacity. Today, optical fibers are widely used in all types of networks due to not only transmission speed or maximum achievable distance but also security. Although fiber optic networks are considered completely secure, there are ways to capture or copy part of the data signal. Both imperfections of passive optical components and, for example, monitoring outputs of active devices can be used. With the advent of quantum computers, current encryption could be broken. It is therefore necessary to address the security of fiber-optic networks, analyze security risks and propose appropriate countermeasures.

    Supervisor: Münster Petr, prof. Ing., Ph.D.

  3. Quantum key distribution in telecommunication networks

    Today's digital world is dependent on data security during communication but also in storage, for example in e-banking, e-commerce, e-health or e-government. With the advent of quantum computers, there is a risk of potential security breaches today. Quantum Key Distribution (QKD) provides a way to distribute and share secret keys that are necessary for cryptographic protocols. The information is coded into individual photons. Integrating QKD systems into existing network infrastructure used for telecommunications is a topical challenge. Some other major challenges include increasing of the key rate, increasing the range of the QKD system, or reducing the complexity and robustness of existing solutions.

    Supervisor: Münster Petr, prof. Ing., Ph.D.

  4. Reconstruction of degraded audio signals based on deep neural networks

    The doctoral study will cope with modern methods of audio restoration. The need to complete the missing segment of an audio signal or to restore saturated signal samples are interesting tasks with the practical use (historical recordings, dropouts in VoIP calls, etc.). Current methods are capable of high quality interpolation of signals that are stationary in the vicinity of the missing section and have harmonic character. The study will focus on methods that combine approaches that have been successful in recent years, namely mathematical optimization methods and the deep neural networks (DNNs). Psychoacoustic viewpoint of the problem will be covered as well. (Collaboration with the Acoustics Research Institute, Vienna)

    Supervisor: Rajmic Pavel, prof. Mgr., Ph.D.

  5. Research of digital biomarkers quantifying dysarthria

    Dysarthria is a motor speech disorder manifested in respiration, phonation, articulation and prosody. Although we can identify several approaches to acoustic speech signal analysis that enable quantifying some manifestations of dysarthria, there are some specific areas (e.g. remote and passive monitoring), where the conventional methods fail, thus it is necessary to look for new solutions. The aim of this dissertation thesis is to research new digital biomarkers that robustly quantify manifestations of dysarthria in different speech dimensions, that will enable partial objectivization of perceptual assessment, and that will be clinically interpretable. The research will be held in cooperation with a neuroscientific team from the St Anne's University Hospital Brno.

    Supervisor: Mekyska Jiří, prof. Ing., Ph.D.

  6. Research of system for testing of security and safety

    The aim of this work is to design methods and tools for verification of security and safety of equipment deployed for real operation. The work is mainly focused on end devices for power engineering and industry deployed within Smart Grids and Industry 4.0 concepts and their verification from the view of security threats and functional errors.

    Supervisor: Mlýnek Petr, doc. Ing., Ph.D.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPC-ET1Electrotechnical materials, material systems and production processescs4Compulsory-optional-DrExS - 39yes
DPC-EE1Mathematical Modelling of Electrical Power Systemscs4Compulsory-optional-DrExS - 39yes
DPC-ME1Modern Microelectronic Systemscs4Compulsory-optional-DrExS - 39yes
DPC-RE1Modern electronic circuit designcs4Compulsory-optional-DrExS - 39yes
DPC-TK1Optimization Methods and Queuing Theorycs4Compulsory-optional-DrExS - 39yes
DPC-FY1Junctions and nanostructurescs4Compulsory-optional-DrExS - 39yes
DPC-TE1Special Measurement Methodscs4Compulsory-optional-DrExS - 39yes
DPC-MA1Statistics, Stochastic Processes, Operations Researchcs4Compulsory-optional-DrExS - 39yes
DPC-AM1Selected chaps from automatic controlcs4Compulsory-optional-DrExS - 39yes
DPC-VE1Selected problems from power electronics and electrical drivescs4Compulsory-optional-DrExS - 39yes
DPX-JA6English for post-graduatesen4Elective-DrExCj - 26yes
DPC-RIZSolving of innovative taskscs2Elective-DrExS - 39yes
DPC-EIZScientific publishing A to Zcs2Elective-DrExS - 26yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPC-TK2Applied cryptographycs4Compulsory-optional-DrExS - 39yes
DPC-MA2Discrete Processes in Electrical Engineeringcs4Compulsory-optional-DrExS - 39yes
DPC-ME2Microelectronic technologiescs4Compulsory-optional-DrExS - 39yes
DPC-RE2Modern digital wireless communicationcs4Compulsory-optional-DrExS - 39yes
DPC-EE2New Trends and Technologies in Power System Generationcs4Compulsory-optional-DrExS - 39yes
DPC-TE2Numerical Computations with Partial Differential Equationscs4Compulsory-optional-DrExS - 39yes
DPC-FY2Spectroscopic methods for non-destructive diagnostics cs4Compulsory-optional-DrExS - 39yes
DPC-ET2Selected diagnostic methods, reliability and qualitycs4Compulsory-optional-DrExS - 39yes
DPC-AM2Selected chaps from measuring techniquescs4Compulsory-optional-DrExS - 39yes
DPC-VE2Topical Issues of Electrical Machines and Apparatuscs4Compulsory-optional-DrExS - 39yes
DPX-JA6English for post-graduatesen4Elective-DrExCj - 26yes
DPC-CVPQuotations in a research workcs2Elective-DrExS - 26yes
DPC-RIZSolving of innovative taskscs2Elective-DrExS - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPX-QJAEnglish for the state doctoral examen4Elective-DrExK - 3yes