study programme

Electronics and Communication Technologies

Faculty: FEECAbbreviation: DKA-EKTAcad. year: 2022/2023

Type of study programme: Doctoral

Study programme code: P0714D060010

Degree awarded: Ph.D.

Language of instruction: English

Tuition Fees: 2500 EUR/academic year for EU students, 2500 EUR/academic year for non-EU students

Accreditation: 28.5.2019 - 27.5.2029

Mode of study

Combined study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering Without thematic area 100

Study aims

Provide doctoral education to graduates of a master's degree in electronics and communication technologies. To deepen students' theoretical knowledge in selected parts of mathematics and physics and to give them the necessary knowledge and practical skills in applied informatics and computer science. To teach them the methods of scientific work.

Graduate profile

The Ph.D. graduate will be able to solve scientific and complex technical problems in the field of electronics and communications. Graduates of the doctoral program "Electronics and Communication Technologies" will be competent to work in the field of electronics and communication technology as scientists and researchers in fundamental or applied research, as high-specialists in development, design, and construction in many R&D institutions, electrical and electronic manufacturing companies and producers and users of communication systems and devices, where they will be able to creatively use modern computer, communication, and measurement technique.

Profession characteristics

The doctors are able to solve independently scientific and complex engineering tasks in the area of electronics and communications. Thanks to the high-quality theoretical education and specialization in the study program, graduates of doctoral studies are sought as specialists in in the area of electronic engineering and communications. Graduates of the doctoral program will be able to work in the field of electronics and communications technology as researchers in fundamental or applied research, as specialists in development, design and construction in various research and development institutions, electrotechnical and electronic manufacturing companies, where they will be able to creative exploit modern computing, communication and measuring technologies.

Fulfilment criteria

Doctoral studies are carried out in agreement with the individual study plan, which will prepare supervisor together with the doctoral student at the beginning of the study. The individual study plan specifies all the duties given by the BUT Study and Examination Rules, which the doctoral student must fulfill to finish his study successfully. These duties are scheduled into entire the study period. They are classified by points and their fulfilment is checked at fixed deadlines. The student enrolls and performs examination from compulsory subjects (Modern digital wireless communication, Modern electronic circuit design), at least from two compulsory-elective subjects aimed at the dissertation area, and at least from two optional courses such as English for PhD students, Solutions for Innovative Entries, Scientific Publishing from A to Z).
The students may enroll for the state exam only if all the examinations specified in his/her individual study plan have been completed. Before the state exam, the student prepares a short version of dissertation thesis describing in detail the aims of the thesis, state of the art in the area of dissertation, eventually the properties of methods which are assumed to be applied in the research topics solution. The defense of the short version of thesis, which is reviewed, is the first part of the state exam. In the next part of the exam the student has to prove deep theoretical and practical knowledges in the field of electrical engineering, electronics, communication techniques, fundamental theory of circuits and electromagnetic field, signal processing, antenna and high-frequency techniques. The state exam is oral and, in addition to the discussion on the dissertation thesis, it also consists of areas related to compulsory and compulsory elective courses.
The student can ask for the dissertation defense after successful passing the state exam and after fulfilling all conditions for termination of studies such as participation in teaching, scientific and professional activities (creative activities), and a study or a work stay at a foreign institution no shorter than one month, or participation in an international project.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study the students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of the studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

2. round (applications submitted from 01.07.2022 to 31.07.2022)

  1. Methods for testing of COTS semiconductor components radiation hardness with respect to space missions

    In recent years more and more commercial companies and research institutions are willing to build new satellites and space probes. In case of their electronic equipment, so called "space grade" parts are traditionally used. Such components are manufactured with respect to harsh environment (space), where they are intended to work. Among the most demanding factors are temperature cycling, vacuum, mechanical stress and ionizing radiation. Regarding the radiation, space grade components are guaranteed to withstand certain intensities and doses of ionizing radiation before they cease functioning. However, such rugged components are very expensive and often quite obsolete in terms of overall performance when compared to commercial off-the-shelf (COTS) components. Thus many companies are trying to utilize COTS components in their space probe and satellite design to improve electronic system performance (increase computing power, decrease power consumption). FPGAs are especially interesting from this point of view. To ensure sufficient reliability of the whole electronic system, all the COTS components used in the design shall be tested on radiation hardness. Traditionally, this is achieved using a Cobalt-60 gamma ray source, as it is widely available and easy to use. However, the space environment is more complex, energy spectrum of the Cobalt-60 is not a perfect match. The aim of the research is to search for alternative methods of electronic components testing, for example utilizing widespread proton accelerators and their parasitic radiative field. It is expected that the methodology will be verified on an FPGA platform. To support the project, we have active cooperation with Masaryk University Brno, VF inc., Nuclear Research Centre Rez, and Department of Nuclear Reactors at CVUT Prague. [1] VELAZCO, R., MCMORROW, D, ESTELA , J. (Editors). Radiation Effects on Integrated Circuits and Systems for Space Applications. Springer Nature Switzerland AG 2019. ISBN 978-3-030-04660-6. [2] Y. Kimoto, N. Nemoto, H. Matsumoto, et al., Space radiation environment and its effects on satellites: analysis of the first data from TEDA on board ADEOS-II. IEEE Trans. Nucl. Sci.52(5),1574–1578 (2005) [3] EIA/JESD57, Test Procedures for the Manegement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation (EIA/JEDEC Standard, Nov. 2017, available at: https://www.jedec.org/standards-documents/docs/jesd-57) [4] ASTM F 1192-11, Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices (ASTM Standard, West Conshohocken, PA, 2006) [5] MIL-STD-750-1, Environmental Test Methods for Semiconductor Devices (Department of Defense Test Method Standard, USA, 2012)

    Supervisor: Kolka Zdeněk, prof. Dr. Ing.

1. round (applications submitted from 01.04.2022 to 15.05.2022)

  1. Deep Learning for Classification of Coexistence of Wireless Communication Systems

    In the future, different wireless communication systems can share common radiofrequency (RF) bands. Such a so called coexistence of these systems can be critical (a partial or full loss of wireless services, provided by communication systems) or non-critical (communication systems can coexist without significant performance degradation) [1]-[3]. Hence, predicting and coordinating the coexistence of these systems will be an important task. Deep learning (DL) based technologies can be a suitable candidate to address such challenges [4]. This work focuses on the development of DL-based algorithm for classification of coexistence scenarios between different wireless communication systems in terms of RF signals. Attention should be devoted to the study of parameters having the highest influence on the character of the interfering signal (e.g. idle signal, modulation scheme, type of modulation). Many parameters enable the DL-based architectures to learn more features from the data [5]. Hence, the DL algorithm must find tradeoff between complexity, accuracy and efficiency. It is assumed that publicly available and self-created dataset will be used for training the DL-based architectures. The DL algorithm (or algorithms) is expected to be programmed in Python using available libraries (PyTorch, Keras, TensorFlow) and should be publicly available for research community. [1] Y. Han, E. Ekici, H. Kremo and O. Altintas, “Spectrum sharing methods for the coexistence of multiple RF systems: A survey,” Ad Hoc Networks, vol. 53, pp. 53-78, Dec. 2016. DOI: 10.1016/j.adhoc.2016.09.009 [2] A. M. Voicu, L. Simić and M. Petrova, "Survey of Spectrum Sharing for Inter-Technology Coexistence," IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1112-1144, Secondquarter 2019, DOI: 10.1109/COMST.2018.2882308 [3] L. Polak and J. Milos, “Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi,” Telecommunication Systems, vol. 74, no. 3, pp. 299-309, July 2020. DOI: 10.1007/s11235-020-00658-w [4] Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler and G. Green, "Deep Learning for RF Signal Classification in Unknown and Dynamic Spectrum Environments," In Proc of. Int. Symp. DySPAN, Nov. 2019, pp. 1-10, DOI: 10.1109/DySPAN.2019.8935684 [5] K. Pijackova and T. Gotthans, "Radio Modulation Classification Using Deep Learning Architectures," In Proc of. 31st Int. Conf. Radioelektronika, Apr. 2021, pp. 1-5, DOI: 10.1109/RADIOELEKTRONIKA52220.2021.9420195

    Supervisor: Polák Ladislav, doc. Ing., Ph.D.

  2. Millimeter wave channel characterization using machine learning

    Steadily growing number of communication devices per area and increasing quality of services require allocation of more frequency resources. Millimeter wave (MMW) frequencies between 30 and 300 GHz have been attracting growing attention as a possible candidate for next-generation broadband cellular networks. Specific limitations of MMW signal propagation, extremely large bandwidth and time variable environment caused by mobile users connected to a backhaul networks traveling in rugged municipal environments create unprecedented challenges to the development of broadband communication systems using advanced technologies for eliminating the undesirable time varying channel features. The general objective of the project is measurement and modelling of the broadband time varying MMW channels between mobile users and infrastructure in delay and spatial domain and extension of our previous research focused on the characterization of intra-vehicle and V2X channels for the purposes of stochastic channel modeling [1]. The parametrization of channel models needs an accurate extraction of the channel parameters such as number, position and amplitudes of multipath components (MPC), clusters, LOS, and NLOS components, etc. in the delay and spatial domains from measured data. Real time capturing of MPCs in a very wide spatial angle is provided, for example, by measuring systems with a fast-spinning antenna. However, such a system produces a huge amount of data. Thus, to get all the MPC related parameters, some automated algorithm is needed. Such algorithms are based for example on identifying the changes in the slope of a channel impulse response or generally on parameter threshold-based identification. Due to the limited accuracy and reliability of many of these methods, we are going to use machine learning (ML) techniques such as Gaussian Mixture Model or K-means algorithm for gathering MPCs with similar parameters behavior [2]. Further the project also envisages the use of supervised ML such as Deep Neural Networks or Support Vector Machine to predict and estimate the channel parameters and examine large and small-scale fading including parameters such as path loss, delay path loss exponent, Doppler spread, angle of arrival, and other variables describing the channel [3]. The above algorithms are expected to be implemented using Machine Learning Workflow with Keras, Tensorflow, and Python [4]. An alternative implementation in MATLAB also possible. The student will be a member of the international team of scientists from Brno University of Technology, TU Vienna, Austrian Institute of Technology Vienna, University of Southern California, National Institute of Technology Durgapur India, and Military University of Technology Warsaw. [1] E. Zöchmann, M. Hofer, M. Lerch, S. Pratschner, L. Bernado, J. Blumenstein, S. Caban, S. Sangodoyin, H. Groll, T. Zemen, A. Prokeš, M. Rupp, A. Molisch, C. Mecklenbräuker, Position-Specific Statistics of 60 GHz Vehicular Channels During Overtaking. IEEE Access, 2019, vol. 7, no. 1, p. 14216-14232. [2] S. M. Aldossari, K.C. Chen, Machine Learning for Wireless Communication Channel Modeling: An Overview, Wireless Personal Communications, 2019, 106, p. 41 – 70. [3] R. A. Osman, S. N. Saleh, Y. N. M. Saleh, M. N. Elagamy, Enhancing the Reliability of Communication between Vehicle and Everything (V2X) Based on Deep Learning for Providing Efficient Road Traffic Information. Applied Science, 2021, vol. 11, art. no. 11382. [4] C. A. Mattmann, Machine Learning with TensorFlow, Second Edition, Manning Publications, 2021.

    Supervisor: Prokeš Aleš, prof. Ing., Ph.D.

  3. Neutron and gamma radiation spectroscopy using proportional detectors

    Currently Bonner spheres are used to measure field of low-energy neutrons (< 100 keV). This method is cumbersome and time-consuming, which limits its application. Utilization of proportional detectors is an alternative and very promising method suitable for measuring mixed fields of photons (gamma rays) and neutrons in energetic range from about 20 keV to 1 MeV. The main benefit of using the proportional detector is that it is capable of both energy measurement and particle discrimination (gamma / neutron) in wide energy range and in reasonably short time. However, so far there is only limited success in the processing of proportional detector output signals, namely discrimination of gamma/neutron particles and energy estimation of those particles. The reason is that the response of the detector is dependent not only on energy and type of the particle, but also on the geometry of the detector and actual trajectory of the particle travelling through the detector. The aim of the thesis is to establish methods (algorithms) for particle discrimination and their respective energy measurement. Currently we have an experimental setup based on FPGA-based data acquisition board, which is intended for experimental data gathering. The data shall be processed in a PC to determine optimum method of energy measurement and particle discrimination. Machine learning techniques are one promising method that shall be (at least) considered. Later on, the FPGA should include those methods (algorithms) so that it can provide measurement results (energy / particle distribution) directly, acting as a stand-alone measurement device. To support the project, we have active cooperation with Masaryk University Brno, VF inc., Nuclear Research Centre Rez, and Department of Nuclear Reactors at CVUT Prague. Those institutions will provide equipment required for experiments with proportional detectors (gamma and neutron radiation sources). The measurement hardware (FPGA-based digitizer with preamplifier) is currently under development in frame of master thesis of student Ondrej Kolar. Ondrej is going to follow up with this topic on his PhD thesis. [1] KNOLL, Glenn F. Radiation Detection and Measurement. 3rd edition. Michigan: John Wiley & Sons, 2000. ISBN 0-471-07338-5. [2] LANGFORD, T.J., C.D. BASS, E.J. BEISE, H. BREUER, D.K. ERWIN, C.R. HEIMBACH a J.S. NICO. Event identification in 3He proportional counters using risetime discrimination. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment [online]. 2013, 717, 51-57 [cit. 2021-12-29]. ISSN 01689002. doi:10.1016/j.nima.2013.03.062 [3] HEEGER, K.M., S.R. ELLIOTT, R.G.H. ROBERTSON, M.W.E. SMITH, T.D. STEIGER a J.F. WILKERSON. High-voltage microdischarge in ultra-low background 3He proportional counters. IEEE Transactions on Nuclear Science [online]. 2000, 47(6), 1829-1833 [cit. 2021-12-29]. ISSN 0018-9499. doi:10.1109/23.914454

    Supervisor: Kolka Zdeněk, prof. Dr. Ing.

  4. Perspective optical wireless communication systems for communication standard B5G a 6G

    The constant development of new standards for wireless communications places increasing demands on individual communication components in terms of transmission speed, transmission capacity, security, versatility, scalability and energy efficiency. Meeting these requirements requires advanced hardware and technology operating in the new spectrum bands [1]. Optical wireless communications, thanks to their specific properties and constant development, occupy an important and irreplaceable place in modern communication technologies, whether for short or long distances. The planned implementation of optical wireless links (FSO) in the B5G and 6G standards for mobile communications is an impulse for a denser deployment of these links in cities and built-up areas. Deployment for temporary (ad-hoc) networks between the UAV (Unnamed Aerial Vehicle) and the ground station is also envisaged. The subject of the scientific project is to investigate methods of optical signal generation and detection in optical wireless communication systems (FSO and VLC), which are implemented in the B5G standard or are planned in 6G. The research will focus on signal processing in optical transceivers. New advanced types of modulations and channel coding will be analyzed. Experimental work will be focused on the comparison of selected types of modulators and detectors. The research aims to suppress the negative influence of the atmosphere [2]-[4] on the transmission of the optical signal, to optimize the transmission technology and to increase its reliability and availability. [1] PÄRSSINEN, A.; ALOUINI, M.; BERG, M.; KUERNER, T.; KYÖSTI, P.; LEINONEN, M. E.; MATINMIKKO-BLUE; M., MCCUNE, E.; PFEIFFER, U., and WAMBACQ, P. (Eds.). (2020). White Paper on RF Enabling 6G – Opportunities and Challenges from Technology to Spectrum [White paper]. (6G Research Visions, No. 13). University of Oulu. [2] BARCIK, P.; WILFERT, O.; DOBESCH, A.; KOLKA, Z.; HUDCOVA, L.; NOVAK, M.; LEITGEB, E. Experimental measurement of the atmospheric turbulence effects and their influence on performance of fully photonic wireless communication receiver. Physical Communication, 2018, vol. 31, no. 1, p. 212-217. ISSN: 1874-4907. [3] MAREK NOVAK; PETER BARCIK; PETR SKRYJA; ZDENEK KOLKA. Service Data Transmission System for Free Space Optics. In 20th Conference on Microwave Techniques COMITE 2021. Brno: IEEE, 2021. s. 1-4. ISBN: 978-1-6654-1454-8. [4] POLIAK, J.; BARCIK, P.; WILFERT, O. Diffraction Effects and Optical Beam Shaping in FSO Terminals. In Optical Wireless Communications - An Emerging Technology. Springer International Publishing Switzerland: Springer International Publishing, 2016. p. 1-21. ISBN: 978-3-319-30200- 3.

    Supervisor: Hudcová Lucie, doc. Ing., Ph.D.

  5. Turbulent model of the underwater medium for optical wireless communications

    Underwater optical communication (UWOC) is one of the perspective directions in optical communications, which is now receiving a lot of attention. The main advantage of underwater communication is real-time communication and high transmission bitrates for short distances [1], [2]. The range of underwater optical links is significantly limited by the spectrally dependent attenuation properties of the water transmission medium depending on the concentration of impurities. The effect of water mass flow (underwater turbulence) on optical signals is also crucial. The turbulence strength depends on several complex water medium parameters (e.g., water temperature, salinity, water flow speed, the refractive index of water, underwater depth, seabed relief) [3], [4]. The aim of the project is a detailed analysis of the underwater medium regarding the water mass flow and the determination of turbulence strength of the underwater transmission medium. The main output of the project will be a turbulent model of the underwater medium, which will define changes in the optical beams' propagation in this medium. Analyzing the propagation of optical beams in the underwater turbulent medium, parameters of the optical beams must be taken into the account (e.g., the intensity profile of the beam, beam coherence, the beam half-width, or the beam wavelength). It is also necessary to determine the degree of the optical signal dispersion for different propagation directions in the turbulent underwater medium. The important goal of the project is to determine the limits of the range and transmission speed of optical underwater links. [1] H. Kaushal and G. Kaddoum, "Underwater Optical Wireless Communication," in IEEE Access, vol. 4, pp. 1518-1547, 2016, doi: 10.1109/ACCESS.2016.2552538. [2] Z. Zeng, S. Fu, H. Zhang, Y. Dong and J. Cheng, "A Survey of Underwater Optical Wireless Communications," in IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 204-238, Firstquarter 2017, doi: 10.1109/COMST.2016.2618841. [3] C. T. Geldard, J. Thompson and W. O. Popoola, "Empirical Study of the Underwater Turbulence Effect on Non-Coherent Light," in IEEE Photonics Technology Letters, vol. 32, no. 20, pp. 1307-1310, 15 Oct.15, 2020, doi: 10.1109/LPT.2020.3020368. [4] S. Zhang, L. Zhang, Z. Wang, J. Quan, J. Cheng and Y. Dong, "On Performance of Underwater Wireless Optical Communications Under Turbulence," 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), 2020, pp. 1-2, doi: 10.1109/CCNC46108.2020.9045458.

    Supervisor: Hudcová Lucie, doc. Ing., Ph.D.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DKA-RE1Modern Electronic Circuit Designen4Compulsory-DrExK - 39yes
DKA-ET1Electrotechnical Materials, Material Systems and Production Processesen4Compulsory-optional-DrExK - 39yes
DKA-FY1Junctions and Nanostructuresen4Compulsory-optional-DrExK - 39yes
DKA-EE1Mathematical Modelling of Electrical Power Systemsen4Compulsory-optional-DrExK - 39yes
DKA-ME1Modern Microelectronic Systemsen4Compulsory-optional-DrExK - 39yes
DKA-TK1Optimization Methods and Queuing Theoryen4Compulsory-optional-DrExK - 39yes
DKA-AM1Selected Chaps From Automatic Controlen4Compulsory-optional-DrExK - 39yes
DKA-VE1Selected Problems From Power Electronics and Electrical Drivesen4Compulsory-optional-DrExK - 39yes
DKA-TE1Special Measurement Methodsen4Compulsory-optional-DrExK - 39yes
DKA-MA1Statistics, Stochastic Processes, Operations Researchen4Compulsory-optional-DrExK - 39yes
DKX-JA6English for post-graduatesen4Elective-DrExCj - 26yes
DKA-EIZScientific Publishing A to Zen2Elective-DrExK - 26yes
DKA-RIZSolving of Innovative Tasksen2Elective-DrExK - 39yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DKA-RE2Modern Digital Wireless Communicationen4Compulsory-DrExK - 39yes
DKA-TK2Applied Cryptographyen4Compulsory-optional-DrExK - 39no
DKA-MA2Discrete Processes in Electrical Engineeringen4Compulsory-optional-DrExK - 39yes
DKA-ME2Microelectronic Technologiesen4Compulsory-optional-DrExK - 39yes
DKA-EE2New Trends and Technologies in Power System Generationen4Compulsory-optional-DrExK - 39yes
DKA-TE2Numerical Computations with Partial Differential Equationsen4Compulsory-optional-DrExK - 39yes
DKA-ET2Selected Diagnostic Methods, Reliability and Qualityen4Compulsory-optional-DrExK - 39yes
DKA-AM2Selected Chaps From Measuring Techniquesen4Compulsory-optional-DrExK - 39yes
DKA-FY2Spectroscopic Methods for Non-Destructive Diagnosticsen4Compulsory-optional-DrExK - 39yes
DKA-VE2Topical Issues of Electrical Machines and Apparatusen4Compulsory-optional-DrExK - 39yes
DKX-JA6English for post-graduatesen4Elective-DrExCj - 26yes
DKA-CVPQuotations in a Research Worken2Elective-DrExK - 26yes
DKA-RIZSolving of Innovative Tasksen2Elective-DrExK - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DKX-QJAEnglish for the state doctoral examen4Elective-DrExK - 3yes