study programme

Information Security

Original title in Czech: Informační bezpečnostFaculty: FEECAbbreviation: DPC-IBEAcad. year: 2020/2021

Type of study programme: Doctoral

Study programme code: P0688D060003

Degree awarded: Ph.D.

Language of instruction: Czech

Accreditation: 8.10.2019 - 7.10.2029

Mode of study

Full-time study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering Without thematic area 80
Informatics Without thematic area 20

Study aims

The student is fostered to use the theoretical knowledge and experience gained through own research activities in an innovative manner. He is able to efficiently use the gathered knowledge for the design of own and prospective solutions within their further experimental development and applied research. The emphasis is put on gaining both theoretical and practical skill, ability of self-decisions, definition of research and development hypotheses to propose projects spanning from basic to applied research, ability to evaluation of the results and their dissemination as research papers and presentation in front of the research community.

Graduate profile

The study program aims at scientific preparation of doctoral students with deep theoretical knowledge of cryptography and system security. Most study courses are focused on applied mathematics, informatics and telecommunication technologies. The graduate has detailed knowledge about communication and information systems, data transfer and its security, including the use and design of software applications. She is able to analyze modern ciphers and cryptographic protocols, evaluate their security and propose their concrete usage in communication systems. She has a deep knowledge of operating systems, programming languages, database systems, distributed applications, etc. She is also experienced in task algoritmization. She is able to design novel technological solutions for telecommunications with high security standards. The graduate is able to understand and design modern cryptographic systems.

Profession characteristics

Graduates of the program "Information Security" will be positioned in research, development and design teams, in expert groups of production or business organizations, in the academic sphere and in other institutions involved in science, research, development and innovation, in all companies where communication systems and secure information transfer through data networks are being applied and used.
Our graduates are particularly experienced in the analysis, design, creation or management of complex systems aimed for secure data transfer and processing, as well as in the programming, integration, support, maintenance or sale of these systems.

Fulfilment criteria

Doctoral studies are carried out according to the individual study plan, which will prepare the doctoral student in cooperation with the doctoral student at the beginning of the study. The individual study plan specifies all the duties stipulated in accordance with the BUT Study and Examination Rules, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are time-bound throughout the study period, they are scored and fixed at fixed deadlines. The student enrolls and performs tests of compulsory courses, obligatory elective subjects with regard to the focus of his dissertation, and elective courses (English for PhD students, Solutions for Innovative Entries, Scientific Publishing from A to Z).
The student may enroll for the state doctoral exam only after all the tests prescribed by his / her individual study plan have been completed. Before the state doctoral exam, the student prepares a dissertation thesis describing in detail the goals of the thesis, a thorough evaluation of the state of knowledge in the area of ​​the dissertation solved, or the characteristics of the methods it intends to apply in the solution. The defense of the controversy that is opposed is part of the state doctoral exam. In the next part of the exam the student must demonstrate deep theoretical and practical knowledge in the field of cryptology, system security, network security and electrical engineering, electronics. The State Doctoral Examination is in oral form and, in addition to the discussion on the dissertation thesis, it also consists of thematic areas related to compulsory and compulsory elective subjects.
To defend the dissertation, the student reports after the state doctoral examination and after fulfilling conditions for termination, such as participation in teaching, scientific and professional activity (creative activity) and at least a monthly study or work placement at a foreign institution or participation in an international creative project .

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

What degree programme types may have preceded

The study program directly follows the Bachelor´s and Master´s study programs Information Security at FEKT, BUT.

Issued topics of Doctoral Study Program

1. round (applications submitted from 01.04.2020 to 15.05.2020)

  1. Cyber attacks detection methods

    The topic is focused on research of new detection mechanisms in order to detect cyber attacks. The main goal is to research new detection mechanisms based on signatures or anomaly detection. The research will primarily focus on models that are created by machine learning algorithms and using the model to detect unknown malicious events (cyber attacks). The goal is also research of suitable correlation methods to detect these attacks. The participation on Department’s research projects is expected.

    Supervisor: Martinásek Zdeněk, doc. Ing., Ph.D.

  2. Cyber Security Assurance for Supervisory Control And Data Acquisition Systems

    The topic is focused on research into and development of modern methods ensuring cybersecurity in systems and networks for supervisory control and data acquisition systems. To this purpose, the combined methods based on advanced anti-malware techniques, intrusion detection and prevention, and self-healing mechanisms will be used. Participation in the Department’s research projects is expected.

    Supervisor: Fujdiak Radek, doc. Ing., Ph.D.

  3. Hardware-Accelerated Cryptography

    The topic is focused on research of novel methods for the optimization of mainly asymmetric cryptographic algorithms for high-speed networks (100 Gbps and more) based on field programmable gate arrays (FPGAs). The participation on Department’s research projects is expected.

    Supervisor: Hajný Jan, prof. Ing., Ph.D.

  4. Hardware-Accelerated Cryptography

    The topic is focused on research of novel methods for the optimization of mainly asymmetric cryptographic algorithms for high-speed networks (100 Gbps and more) based on field programmable gate arrays (FPGAs). The participation on Department’s research projects is expected.

    Supervisor: Hajný Jan, prof. Ing., Ph.D.

  5. Modern Methods of Intrusion Detection in Industrial Control Systems

    The topic is focused on research into and development of novel methods for intrusion detection systems in industrial control systems and networks. The main objective is to create a security layer with the capability to detect past and ongoing cyber incidents. This layer is represented by a system based on deep learning algorithms, pattern recognition and modern anomaly detection algorithms. Participation in the Department’s research projects is expected.

    Supervisor: Fujdiak Radek, doc. Ing., Ph.D.

  6. Research on lightweight cryptography for IoT

    The topic focuses on the analysis, design and optimization of lightweight cryptography protocols and solutions. The main aspect of the research is to design solutions providing the security and data protection for Internet of Things (IoT) based on communication types such as D2D (device - device) and D2I (device - infrastructure). The research will focus on problems and solutions of applied cryptography on computational and memory constrained resources. The participation on Department’s national and international research projects is expected.

    Supervisor: Malina Lukáš, doc. Ing., Ph.D.

  7. Security of Software Defined Networks

    The aim is to analyse security aspects of the Software Defined Networks (SDN) technology. Optimization of existing and design of new algorithms against vulnerability of SDN will be proposed. New strategies are needed to secure the operation of the control plane, ensuring the controller is a priority. The attack vectors for SDN systems and share routes to secure the virtual network infrastructure that supports SDN and then the methods that are currently being considered in network protection play an important role. Due to the separation of the control plane from the data plane, there are several parts that must be protected from attackers. In addition to attacks on the controller, there are attacks on links, data plane devices, and applications. The application sphere of the research will be Blockchain-Based Distributed Trading in Energy Internet, smart grids, microgrids, solar energy systems and other current technologies. Selection and subsequent use of suitable simulation tools and other means is expected.

    Supervisor: Škorpil Vladislav, doc. Ing., CSc.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPC-PKRAdvanced Cryptographycs4Compulsory-DrExS - 39yes
DPC-TK1Optimization Methods and Queuing Theorycs4Compulsory-optional-DrExS - 39yes
DPC-MA1Statistics, Stochastic Processes, Operations Researchcs4Compulsory-optional-DrExS - 39yes
DPC-JA6English for post-graduatescs4Elective-DrExCj - 26yes
DPC-RIZSolving of innovative taskscs2Elective-DrExS - 39yes
DPC-EIZScientific publishing A to Zcs2Elective-DrExS - 26yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPC-BSZSystem and Device Securitycs4Compulsory-DrExS - 39yes
DPC-MA2Discrete Processes in Electrical Engineeringcs4Compulsory-optional-DrExS - 39yes
DPC-RE2Modern digital wireless communicationcs4Compulsory-optional-DrExS - 39yes
DPC-TE2Numerical Computations with Partial Differential Equationscs4Compulsory-optional-DrExS - 39yes
DPC-JA6English for post-graduatescs4Elective-DrExCj - 26yes
DPC-CVPQuotations in a research workcs2Elective-DrExP - 26yes
DPC-RIZSolving of innovative taskscs2Elective-DrExS - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Prof.Compl.Hr. rangeGr.Op.
DPC-QJAEnglish for the state doctoral examcs4Compulsory-DrExS - 3yes