Course detail

Computer Vision (in English)

FIT-POVaAcad. year: 2023/2024

Principles and methods of computer vision, methods and principles of image acquiring, preprocessing methods (statistical processing), filtering, pattern recognition, integral transformations - Fourier transform, image morphology, classification problems, automatic classification, D methods of computer vision, open problems of computer vision.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Entry knowledge

Not applicable.

Rules for evaluation and completion of the course

Homeworks, Mid-term test, individual project.

Aims

To get acquainted with the principles and methods of computer vision. To learn in more detail selected methods and algorithms of vision and image acquiring. To get acquainted with the possibilities of the scanned data processing. To learn how to apply the gathered knowledge practically.
The students will get acquainted with the principles and methods of computer vision. They will learn in more detail selected methods and algorithms of vision and image acquiring. They will also get acquainted with the possibilities of the scanned data processing. Finally, they will learn how to apply the gathered knowledge practically.
The students will improve their teamwork skills, mathematics, and exploitation of the "C", C++, and other languages.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Horn, B.K.P.: Robot Vision, McGraw-Hill, 1988, ISBN 0-07-030349-5 Hlaváč, V., Šonka, M.: Počítačové vidění, Grada, 1993, ISBN 80-85424-67-3  Russ, J.C.: The IMAGE PROCESSING Handbook, CRC Press, 1995, ISBN 0-8493-2532-3 Bass, M.: Handbook of Optics, McGraw-Hill, New York, USA, 1995, ISBN 0-07-047740-X

Recommended reading

IEEE Multimedia, IEEE, USA - série časopisů - různé články (EN)
Šonka, M., Hlaváč, V., Boyle, R.: Image processing, Analysis, and Machine Vision, THOMSON 2013, ISBN: 978-9386858146 (EN)
Šonka, M., Hlaváč, V., Boyle, R.: Image processing, Analysis, and Machine Vision, THOMSON 2013, ISBN-13: 978-9386858146 (EN)
(EN)
Hlaváč, V., Šonka, M.: Počítačové vidění, GRADA 1992, ISBN 80-85424-67-3 (EN)

Elearning

Classification of course in study plans

  • Programme IT-MSC-2 Master's

    branch MGMe , 0 year of study, winter semester, compulsory-optional

  • Programme IT-MSC-2 Master's

    branch MPV , 0 year of study, winter semester, compulsory-optional
    branch MIN , 0 year of study, winter semester, compulsory-optional
    branch MGM , 0 year of study, winter semester, compulsory-optional
    branch MBS , 0 year of study, winter semester, elective
    branch MIS , 2 year of study, winter semester, elective
    branch MBI , 0 year of study, winter semester, elective
    branch MSK , 0 year of study, winter semester, elective
    branch MMM , 0 year of study, winter semester, elective

  • Programme MIT-EN Master's 0 year of study, winter semester, elective

  • Programme MITAI Master's

    specialization NSPE , 0 year of study, winter semester, elective
    specialization NBIO , 0 year of study, winter semester, elective
    specialization NSEN , 0 year of study, winter semester, elective
    specialization NVIZ , 0 year of study, winter semester, compulsory
    specialization NGRI , 0 year of study, winter semester, elective
    specialization NADE , 0 year of study, winter semester, elective
    specialization NISD , 0 year of study, winter semester, elective
    specialization NMAT , 0 year of study, winter semester, elective
    specialization NSEC , 0 year of study, winter semester, elective
    specialization NISY up to 2020/21 , 0 year of study, winter semester, elective
    specialization NCPS , 0 year of study, winter semester, compulsory
    specialization NHPC , 0 year of study, winter semester, elective
    specialization NNET , 0 year of study, winter semester, elective
    specialization NMAL , 0 year of study, winter semester, elective
    specialization NVER , 0 year of study, winter semester, elective
    specialization NIDE , 0 year of study, winter semester, elective
    specialization NEMB , 0 year of study, winter semester, elective
    specialization NISY , 0 year of study, winter semester, elective
    specialization NEMB up to 2021/22 , 0 year of study, winter semester, elective

  • Programme IT-MGR-1H Master's

    specialization MGH , 0 year of study, winter semester, recommended course

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Introduction, motivation and applications/Úvod, základy, motivace a aplikace (Zemčík 22.9.)
  2. Statistical Pattern Recognition, Bayesian Clasifier and Mixture Models/Statistické rozpoznávání, Bayesovský klasifikátor a GMM (Španěl 29.9.)
  3. Clustering and Image Segmentation / Shlukování a segmentace obrazu (Španěl 6.10. slajdy1, slajdy2, slajdy3)
  4. Scanning object detection, boosted classifiers, acceleration/Detekce objektů oknem, boostované klasifikátory, akcelerace (Zemčík 13.10.)
  5. Object Detection - Trees, Random Forests, Yolo?/Detekce objektů - Stromy, "Random Forests",Yolo? (Juránek, 20.10. slajdy-en)
  6. Convolutional Neural Networks and Automatic Image Tagging/Konvoluční neuronové sítě a tagování obrazu (Hradiš, 27.10. slajdy)
  7. Hough Transform, RHT, RANSAC, Sequence Processing/Houghova transformace, RHT, RANSAC, zpracování sekvencí (Hradiš, 3.11. slajdy1, slajdy2, slajdy2-en)
  8. 3D Computer Vision/3D počítačové vidění (10.11. Šolony)
  9. xxx International Students Day 17.11. xxx
  10. Test, Stereovision, SLAM/Stereoviděni, SLAM (24.11. Šolony)
  11. Invariant Image Regions/Invariantní oblasti obrazu (Beran, 1.12. slajdy)
  12. Analysis and Feature Extraction from Images/Analýza a extrakce příznaků z textur (Čadík 8.12. slajdy)
  13. Image Registration/Registrace obrazu (Čadík, 15.12. slajdy)

NOTE: The topics and dates are just FYI, not guaranteed, and will be continuously updated.

POZOR!!! Témata přednášek i data jsou orientační a budou v průběhu semestru aktualizována.

Project

26 hod., compulsory

Teacher / Lecturer

Syllabus

  1. Homeworks (4-5 runs) at the beginning of semester
  2. Individually assigned project for the whole duration of the course.

Elearning