Course detail

Experimental Methods

FSI-QEMAcad. year: 2022/2023

The course "Experimental Methods" introduces students to the procedures and methods used in experimental problem solving in the Automotive and Traffic Engineering program so that they are able to apply them in practice. It explains the basics of modern methods for measuring mechanical quantities and defines the structure of the measurement and control instrumentation chain. Measures kinematic quantities, forces, moments, pressure, temperature and noise.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The graduate of the course will acquire theoretical knowledge and practical experience with experimental work with an emphasis on the use of computers in measuring and processing the experiment is able to simplify problems to choose the solution procedure and to orientate in the selection of appropriate measuring techniques.

Prerequisites

Basic knowledge of mathematics, physics, mechanics and electrical engineering at the level of a bachelor's degree in engineering.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

Assessment methods and criteria linked to learning outcomes: Conditions for awarding the course-unit credit: active participation in seminars, elaboration of seminars, and passing a credit test. Exam: the exam examines the acquisition of knowledge gained in lectures, is focused primarily on the application of this knowledge to measurement and instrumentation, the exam is a written test and the possibility of oral verification of knowledge, up to 50% of the evaluation is the classification of laboratory exercises.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to acquaint students with measurement methods and approaches to experimental problem solving with a focus on internal combustion engines and motor vehicles. It is essential to obtain a basic idea of the complexity of experimental work and current technical possibilities for their solution.

Specification of controlled education, way of implementation and compensation for absences

Attendance at the exercise is mandatory. Absence is solved with the teacher entering a substitute assignment.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

VENKATESHAN, S. P. Mechanical Measurements. 2. London: John Wiley&Sons, 2015. ISBN 978-11-1911-556-4. (EN)
MCBEATH, Simon. Competition car data logging. 2nd ed. Newbury Park, Calif.: Haynes North America, 2008. ISBN 978-184-4255-658. (EN)
CROCKER, Malcolm J. Handbook of noise and vibration control. Hoboken: Wiley, 2007, xxiv, 1569 s. : il. ISBN 978-0-471-39599-7. (EN)

Recommended reading

KUTZ, Myer. Handbook of measurement in science and engineering. Hoboken, New Jersey: Wiley, 2013. ISBN 978-0-470-40477-5. (EN)
TŮMA, Jiří. Vehicle gearbox noise and vibration: measurement, signal analysis, signal processing and noise reduction measures. Chichster: Wiley, 2014, xiv, 243 s. : il. ISBN 978-1-118-35941-9. (EN)
PAVELEK, Milan a Josef ŠTĚTINA. Experimentální metody v technice prostředí. 3. vyd. Brno: Akademické nakladatelství CERM, 2007, 215 s. ISBN 978-80-214-3426-4. (CS)
MIŠUN, Vojtěch. Vibrace a hluk. Vyd. 2. / v Akademickém nakladatelství CERM 1. vyd. Brno: Akademické nakladatelství CERM, 2005, 177 s. : il. ISBN 80-214-3060-5. (CS)
MARTYR, A. J. a M. A. PLINT. Engine Testing Theory and Practice. 3. Oxford: Elsevier, 2007. ISBN 978-0-7506-8439-2. (EN)

eLearning

Classification of course in study plans

  • Programme N-ADI-P Master's, 1. year of study, summer semester, compulsory

  • Programme CŽV Lifelong learning

    branch CZV , 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

  1. Basics of the theory of experiment, concepts and methods of work. Prescriptions for measurements. Measurement errors and uncertainties.
  2. Measurement of electrical and non-electrical quantities. Measurement chain. Sensors and their characteristics. Computerised measurement systems. Digitisation, sampling rates. Measuring cards, modules and instruments.
  3. Processing of measurement results.
  4. Measurement of temperatures, pressures, flow and heat fluxes.
  5. Strain gauges, strain gauge signal evaluation methods, application of strain gauges to force and pressure transducers.
  6. Strain gauges, strain gauge signal evaluation methods, application of strain gauges to force and pressure transducers.
  7. Noise, vibration and speed measurements. Acoustic measurements in automotive development.
  8. Identification of noise sources.
  9. Introduction to experimental modal analysis.
  10. On-board measurement issues, Global Positioning System (GPS).
    Driving tests.
  11. Problems of measuring internal combustion engines on engine test benches.
  12. Measurement issues on cylinder test benches, emission measurements.
  13. On-board diagnostics of vehicles, vehicle data networks, On Board Diagnostic, CAN bus based communication.

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

  1. Laboratory safety, processing of measurement results in MATLAB.
  2. Data processing. Measurement chain.
  3. Measurement of temperatures, pressures, flow rates on the combustion engine.
  4. Measurement of forces, speed, engine and cylinder dynamometer.
  5. Tensometry 1
  6. Tensometry 2
  7. Modal analysis, FFT.
  8. Analysis of mechanical vibration of engine as a function of operating speed.
  9. Acoustic measurements. Measurement of the acoustic power of a noise source.
  10. Driving tests, GPS.
  11. Brake, shock absorber and geometry measurements.
  12. On-board diagnostics. Datalogging in automotive technology.
  13. Credit test, evaluation of protocols.

eLearning