Course detail
Strength of Materials I
FSI-4PPAcad. year: 2020/2021
Basic concepts and problems of strength analysis. Basic mechanical properties of material. Concepts of stress and strain. General theorems of linear elasticity. Definition and classification of bar and beam as the simplest model of a body. Bar under simple loading - tension / compression, torsion; bending of beams. Basic limit states of ductile and brittle materials under static loading. Safety conditions. Beams and bars under combined loading. Stability of compressed bars.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Final examination: Written part of the examination plays a decisive role, where the maximum of 80 ECTS points can be reached. Solution of several computational problems is demanded. The problems come from typical profile areas of given subject and supplied by a theoretical question, proof, etc. The lecturer will specify exact demands like the number and types problems during the semester preceding the examination.
Final evaluation of the course is obtained as the sum of ECTS points gained in seminars and at the examination. To pass the course, at least 50 points must be reached.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Hoschl, C.: Pružnost a pevnost ve strojírenství, SNTL, Praha, 1971
Pestel, E., Wittenburg, J.: Technische Mechanik, Band 2: Festigkeitslehre, B I, Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zűrich, 1992
Recommended reading
Elearning
Classification of course in study plans
- Programme B-VTE-P Bachelor's 1 year of study, summer semester, compulsory
- Programme B3A-P Bachelor's
branch B-MET , 2 year of study, summer semester, compulsory
- Programme B3S-P Bachelor's
branch B-STI , 2 year of study, summer semester, compulsory
- Programme B-FIN-P Bachelor's 2 year of study, summer semester, compulsory-optional
- Programme B-MAI-P Bachelor's 2 year of study, summer semester, compulsory
- Programme B-PDS-P Bachelor's 2 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Behaviour of linear elastic body. Definition of the linear solids and structures. Basic theorems of linear solids and structures – theorem of reciprocity of work, deformation work of force and force system, Castigliano's theorem. Saint Venant’s principle.
3. Straight members in strength analysis - definition, classification. Geometric characteristics of the cross section. Planar moments of inertia and their transformations. Principal and central principal moments of inertia.
4. Simple tension and compression. Strain, stress, strain energy. Influence of imperfections on stress and strain. Safety of straight bar.
5. Statically indeterminate bars. Bar systems, combined systems of bars and general bodies. External and internal static indeterminacy.
6. Simple bending. Strain, stress, strain energy. Influence of imperfections on stress and strain. Shear stress caused by shear force. Safety of beams.
7. Statically indeterminate bars. Shear stress in thin-walled profiles, shear centre.
8. Weakly and strongly curved bars, frames.
9. Simple torsion. Stress, strain, strain energy. Influence of imperfections on stress and strain. Safety of bars in torsion. Statically indeterminate cases.
10. State of stress in a point of continuum, stress tensor, principal stresses. Representation of stress state in the Mohr’s plane. Special cases of stress state, plane stress.
11. Failure theories for ductile and brittle materials under static monotonic loading. Safety, equivalent stress. Behavior of material under cyclic loading, basic fatigue characteristics of material.
12. Bars and beams under combined loading. An overview of problems to be solved by analytical, numerical and experimental methods.
13. Stability of compressed bars. Influence of imperfections on critical force. Possible modes of failure of real bar under compression. Safety of compressed bars.
Exercise
Teacher / Lecturer
Syllabus
2. Internal resultant forces and moments in a curved bar.
3. Tension/compression of bar, stress, strain and deformation. Statically determinate problems.
4. Tension/compression of bar systems, pin-jointed structures.
5. Bending. Stress, strain and deformation in statically indeterminate beams.
6. Torsion. Statically determinate and indeterminate tasks.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Inertia moments of the cross section. Mohr’s diagram.
3. Tension/compression of bar, stress, strain and deformation. Statically indeterminate problems.
4. Bending. Stress, strain and deformation in statically determinate beams.
5. Curved bars and frames. Use of symmetry and anti-symmetry.
6. Combined loading.
7. Stability of compressed bars. Safety of real bar under compression.
Guided consultation
Teacher / Lecturer
Syllabus
Elearning