Course detail
Mathematics 2
FP-ma2PAcad. year: 2020/2021
The subject is part of the theoretical basis of the field. Learning outcomes of the course unit The aim of the course is to teach students how to use the numerical series apparatus, Taylor's method for approximate calculation of function values, indefinite and certain integrals of function 1, solutions of 2 types of selected differential equations, theory of functions of 2 real variables, logic bases and graph theory economic disciplines).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Credit is a necessary condition for taking the exam.
The exam has a written and an oral part, while the focus of the exam is an oral part.
If the student does not achieve at least 55% of the total number of achievable points, the written part and the whole exam is graded "F" (unsatisfactory) and the student does not proceed to the oral part.
The oral part, focused on the knowledge of the theory, follows the written part, it also serves to resolve any ambiguities in the written part.
Course curriculum
1. Sequences (limited and monotone sequences of real numbers, sequence limit).
2. First order derivations (sense, basic properties and rules, derivation of elementary functions).
3. Derivatives of the first and higher order (differential and its use, higher order derivation, l'Hospitality rule).
4. The course of function I (monotony, local and absolute extremes of function).
5. Function II (convexity and concavity, function asymptotes, full description of function behavior).
6. Indefinite integral (meaning, properties, condition of existence, basic rules for calculation, integrals of some elementary functions).
7. Integration methods (per partes and substitution methods, integration of simple rational functions).
8. Certain integral (meaning, properties, calculation rules, other applications, non-integral integral).
9. Differential equations of the first order (with separated variables, linear).
10. Linear differential equations of the 2nd order (with constant coefficients).
11. Function of multiple variables (graph and its cuts, 1st order partial derivation, differential).
12. Partial derivatives of higher order (interchangeability, local extrema).
13. Absolute and bound extremes (on compact sets, Lagrange method).
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MEZNÍK, I. Základy matematiky pro ekonomii a management. Základy matematiky pro ekonomii a management. 2017. s. 5-443. ISBN: 978-80-214-5522-1. (CS)
Mezník,I.: Matematika II.FP VUT v Brně, Brno 2009 (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus
Elearning