Course detail
Digital Signals and Systems
FEKT-MPC-CSIAcad. year: 2019/2020
Definition and classification of 1D and 2D discrete signals and systems. Signal and system examples. Spectral analysis using FFT. Spectrograms and moving spectra. The Hilbert transform. Representation of bandpass signals. Decimation and interpolation. Transversal and polyphase filters. Filter banks with perfect reconstruction. Quadrature mirror filters (QMF). The wavelet transform. Signal analysis with multiple resolution. Stochastic variables and processes, mathematical statistics. Power spectral density (PSD) and its estimation. Non-parametric methods for PSD calculation. Linear predictive analysis. Parametric methods for PSD calculation. Complex and real cepstra. In computer exercises students verify digital signal processing method in the Matlab environment. Numerical exercises are focused on examples of signals and systems analysis.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- define, describe and visualize 1D and 2D signals
- calculate Fourier, cosine, Hilbert, wavelet and Z transform of discrete signal
- define discrete systems and analyse their properties using different methods
- change signal sampling frequency
- use analytical and complex signal
- use a bank of digital filters
- perform a short-time spectral analysis using Gabor or short-time Fourier transform
- mathematically describe stochastic processes and test statistical hypotheses
- use linear predictive analysis
- estimate power spectral density using parametric and non-parametric methods
- use cepstral analysis and homomorphic filtering
- perform discrete-time signal and system analysis in Matlab
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Characteristics and classification of discrete systems
3. One-dimensional LTI discrete systems analysis
4. Discrete cosine transform. Digital processing of signals with changing sampling frequency
5. Band-limited signals representation
6. Bank of digital filters
7. Short-time spectral analysis
8. Wavelet transform and its relation to bank of filters
9. Stochastic processes and their properties
10. Linear predictive analysis
11. Non-parametric power spectral density calculation methods
12. Parametric power spectral density calculation methods
13. Cepstral analysis
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Charakteristika a klasifikace diskrétních systémů
3. Analýza jednorozměrných LTI diskrétních systémů
4. Diskrétní kosinova transformace. Číslicové zpracování signálu se změnou vzorkovacího kmitočtu
5. Reprezentace pásmově omezených signálů
6. Banky číslicových filtrů
7. Krátkodobá spektrální analýza
8. Vlnková transformace a její souvislost s bankami číslicových filtrů
9. Náhodné procesy a jejich vlastnosti
10. Lineární predikční analýza
11. Neparametrické metody výpočtu výkonové spektrální hustoty
12. Parametrické metody výpočtu výkonové spektrální hustoty
13. Kepstrální analýza
Exercise in computer lab
Teacher / Lecturer
Syllabus
1. Základy práce v prostředí Matlab, generování základních deterministických signálů, možnosti zobrazení.
2. Diskrétní Fourierova transformace (DFT), rychlá DFT, kruhová konvoluce, zpracování signálu po blocích, metoda overlapp add, krátkodobá Fourierova analýza
3. Vlastnosti lineárních časově invariantních systémů (1), lineární diskrétní konvoluce, impulzní charakteristika
4. Vlastnosti lineárních časově invariantních systémů (2), přenosová funkce, kmitočtová charakteristika, rozložení nulových bodů a pólů
5. Návrh číslicových filtrů typu IIR
6. Test č. 1
7. Návrh číslicových filtrů typu FIR
8. Nadvzorkování a podvzorkování signálů v prostředí Matlab, změna vzorkovacího kmitočtu v poměru racionálního čísla
9. Banky číslicových filtrů, dokonalá rekonstrukce
10. Generování náhodných diskrétních signálů v prostředí Matlab, výpočet jejich momentů, korelace a kovariance, ověření stacionarity a ergodicity
11. Waveletová transformace v prostředí Matlab, použití wavelet toolbox
12. Test č. 2
13. Náhradní cvičení
Fundamentals seminar
Teacher / Lecturer
Syllabus
2. Vlastnosti lineárních časově invariantních systémů.
3. Lineární diskrétní konvoluce, kruhová konvoluce, rychlá konvoluce, impulzní charakteristika.
4. Přímá a zpětná transformace Z. Přenosová funkce a kmitočtová charakteristika. Rozložení nulových bodů a pólů.
5. Vnější a stavový popis. Maticový zápis soustavy stavových rovnic a jejich řešení.
6. Grafy signálových toků a Masonovo pravidlo. Spojování systémů z dílčích sekcí.
7. Vytváření periodické sudé posloupnosti z jednorázové posloupnosti. Diskrétní kosinova transformace.
8. Vzorkování pásmově omezených signálů. Hilbertova transformace.
9. Vlnková transformace s diskrétním časem.
10. Distribuční funkce a hustota rozdělení pravděpodobnosti, obecné a centrální momenty. Stacionární a ergodické spojité a diskrétní náhodné procesy. Odhady, konsistentní odhad.
11. Náhodný výběr z rozdělení pravděpodobnosti, statistiky, testování statistických hypotéz, parametrické a neparametrické testy, testy dobré shody.
12. Výpočet lineárních predikčních koeficientů. Použití lineární predikční analýzy pro kompresi řečového signálu.
13. Reálné a komplexní spektrum.