Přístupnostní navigace
E-application
Search Search Close
study programme
Faculty: FEECAbbreviation: DPAD-EITAcad. year: 2021/2022
Type of study programme: Doctoral
Study programme code: P0619D060001
Degree awarded: Ph.D.
Language of instruction: English
Accreditation: 8.10.2019 - 7.10.2029
Mode of study
Full-time study
Standard study length
4 years
Programme supervisor
doc. Ing. Jiří Hošek, Ph.D.
Doctoral Board
Chairman :doc. Ing. Jiří Hošek, Ph.D.Councillor internal :prof. Ing. Jaroslav Koton, Ph.D.prof. Ing. Zdeněk Smékal, CSc.prof. Ing. Jiří Mišurec, CSc.doc. Ing. Vladislav Škorpil, CSc.prof. Ing. Radim Burget, Ph.D.Councillor external :prof. Ing. Ivan Baroňák, Ph.D.doc. Ing. Miloš Orgoň, Ph.D.doc. Ing. Otto Dostál, CSc.
Fields of education
Study aims
The student is fostered to use the theoretical knowledge and experience gained through own research activities in an innovative manner. He/She is able to efficiently use the gathered knowledge for the design of own and prospective solutions within their further experimental development and applied research. The emphasis is put on gaining both theoretical and practical skill, ability of self-decisions, definition of research and development hypotheses to propose projects spanning from basic to applied research, ability to evaluation of the results and their dissemination as research papers and presentation in front of the research community.
Graduate profile
The doctor study program "Electronics and Information Technologies" aims to generate top research and development specialists, who have deep knowledge of principles and techniques used in communication and data wired and wireless networks and also in related areas and also in data/signal acquisition, processing and the back representation of user data on the level of application layer. The main parts of the studies are represented by areas dealing with information theory and communication techniques. The graduate has deep knowledge in communication and information technologies, data transfer and their security. The graduate is skilled in operation systems, computer languages and database systems, their usage and also design of suitable software and user applications. The graduate is able to propose new technology solution of communication tools and information systems for advanced transfer of information.
Profession characteristics
Graduates of theprogram "Electronics and Information Technologies" apply in particular in research, development and design teams, in the field of professional activity in production or business organizations, in the academic sphere and in other institutions involved in science, research, development and innovation, in all areas of the company where communication systems and information transfer through data networks are being applied and used. Our graduates are particularly experienced in the analysis, design, creation or management of complex systems aimed for data transfer and processing, as well as in the programming, integration, support, maintenance or sale of these systems.
Study plan creation
The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive. Within mainly the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis. By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course. In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis. By the end of the winter term in the fourth year of study the full-time students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The combined students submit the elaborated dissertation thesis by the end of winter term in the fifth year of study. The final dissertation thesis is expected to be submitted by the student by the end of the fourth or fifth year of the full-time or combined study form, respectively. In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.
Issued topics of Doctoral Study Program
The massive expansion of MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) by mass spectrometry brings completely new possibilities to the field of analysis and identification of microbial colonies. The supplier Bruker Daltonics GmbH & Co. KG (hereinafter referred to as Bruker) with its complementary product MBT Pathfinder brings to this area a significant simplification and above all standardization and transparency of the sample preparation process for mass spectrometry by automating the transfer of microbial colonies from culture Petri dishes to MALDI plates with targets. In addition, the digitization of sample preparation will allow the acquisition and analysis of other useful information about the observed microbial colonies. This dissertation deals with the study of artificial intelligence of microbial colonies cultured on Petri dishes such as their number, color, size, shape, location on the dish, distance from other colonies, coloration of their surroundings, or reaction with reagents on the dishes. This information can be used as a monitoring parameter in the research, but it can also be used before the transfer of the colonies for the appropriate selection of candidates from the Petri dish for subsequent analysis by mass spectrometry. Selected parameters will be processed using modern machine learning methods. The research will use a bank of images of Petri dishes with cultured microbes provided by Bruker, suitably adapted to the given problem. The diversity and breadth of the topic offers many possibilities for applying methods in the field of classification, clustering, semantic and instance segmentation, object detection and many others. The obtained knowledge can be used to improve the results of mass spectrometry by appropriate selection of colonies for analysis, e. g. according to selected evaluation parameters, colony reactions with reagents on agar or differences from other colonies.
Supervisor: Burget Radim, prof. Ing., Ph.D.
Research activities and development in the area of heterogeneous communication networks aim to meet the demanding requirements of the communication networks, i.e., increased communication speeds, optimized communication latency, enhanced quality of service, and exponentially growing number of connected devices to the network. The ubiquitous connectivity is supposed to achieve while utilizing new communication principles, progressive technologies, innovative mechanisms for the management of the network resources, and essential modifications of the frequency spectrum as well as an advanced selection of the serving cells. The communication technologies operating in both licensed and license-exempt frequency bands will be then integrated into the one heterogeneous communication system. The aim of the dissertation thesis is to study up-to-date communication technologies for the communication scenarios known as massive Machine-Type Communication (mMTC). During the initial phase, the attention will be given to: (i) the communication technologies operating in the licensed frequency bands, i.e., those defined by 3GPP in the Release 13 and newer (Narrowband IoT, LTE Cat-M a 5G (NSA, SA)) and (ii) to the communication technologies utilizing the license-exempt frequency bands, i.e., (Sigfox, LoRaWAN). The initial findings will be used to fully understand the key principles of the Low-Power Wide-Area (LPWA) technologies. Also, to extend the knowledge, real measurement campaigns will take place using the communication prototypes built at Brno University of Technology. Finally, the obtained data will be used as the input data sets for complex simulation scenarios / analytical modeling. Next, the results will be analyzed and proposals of the new communication mechanisms targeting the optimization of the utilization of the network resources will be discussed. The attention will be focused on: (i) predictive switching between serving cells / communication technologies, (ii) optimization of the control plane traffic with the option to transmit the user data within the signaling traffic, (iii) switching between device operation states (connected, idle, power saving), (iv) forming of the MESH communication infrastructure while using the heterogeneous communication systems. Introduced principles will be then implemented within the infrastructure of the communication operator as well as on the side of the end devices. To be able to reach the above-mentioned goals, the unique laboratory at the Department of Telecommunication at BUT (UniLab) will be used. Also, while working on the dissertation thesis, cooperation with both industry and academia partners will be held.
Supervisor: Mašek Pavel, doc. Ing., Ph.D.
The work focuses on the design, simulation and development of distributed and quasi-distributed fiber optic sensing systems. These systems use conventional single-mode telecommunication optical fibers, multimode fibers, polymer optical fibers (POF), microstructural fibers, multicore fibers, or other special fibers as a sensor. Using scattering phenomena (Raman, Brillouin, or Rayleigh scattering), or possibly changing the parameters of the transmitted optical signal (change in intensity, phase, polarization, etc.), it is possible to obtain information about temperature, vibration and other physical quantities along the optical fiber.
Supervisor: Münster Petr, prof. Ing., Ph.D.
Small base stations installed on autonomous devices, such as drones, are considered an important part of new generations of wireless cellular networks in order to provide additional coverage and capacity of the mobile network based on current demand. Due to the dynamic nature, traffic density and diverse requirements of modern wireless networks, flexible solutions are important for practical deployments that can respond in real time to the current requirements of modern network applications and adapt their parameters such as scalability, topology or coverage. The aim of this work is to research the mechanisms of flying base stations as an important component of emerging 5G + wireless networks. The student's task will be to make a detailed overview of existing commercial and non-commercial solutions and technologies of autonomous mobile networks and then with the help of artificial intelligence and machine learning tools to design mechanisms for dynamic topology, "on-demand" configuration and optimization of communication parameters of networks consisting of autonomous base stations with respect to basic network KPIs such as the number of users served, continuity of service or energy efficiency.
Supervisor: Hošek Jiří, doc. Ing., Ph.D.