study programme

Power Systems and Power Electronics

Original title in Czech: Silnoproudá elektrotechnika a elektroenergetikaFaculty: FEECAbbreviation: DPC-SEEAcad. year: 2020/2021

Type of study programme: Doctoral

Study programme code: P0713D060005

Degree awarded: Ph.D.

Language of instruction: Czech

Accreditation: 28.5.2019 - 27.5.2029

Mode of study

Full-time study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering 60
Energetics 40

Study aims

The doctor study programme is devoted to the preparation of the high quality scientific and research specialists in various branches of power electronics, control technology, design of electrical machines, electric power generation and distribution, and electric power utilization.
The aim is to provide the doctor education in all these particular branches to students educated in university magister study, to make deeper their theoretical knowledge, to give them also requisite special knowledge and practical skills and to teach them methods of scientific work.

Graduate profile

The goal of the postgradual doctoral (PhD) study of the program "Power Systems and Power Electronics" is the education for scientific work in the area of power electrical engineering and power systems. Graduates of PhD find occupation either as scientific or research workers including industrial development, either as university teachers and in higher manager functions as well.

Profession characteristics

The graduate of the doctor study program "Power Systems and Power Electronics" obtains broad knowledge of subject of high power engineering. The knowledge is built mainly on theoretical background of the subject. Moreover, the graduate will obtain deep special knowledge aimed in direction of his/her thesis. The graduate will be able to perform scientific and/or applied research based on up to date theoretical knowledge. The graduate will be able to organize and lead a team of researchers in the studied subject.

Fulfilment criteria

Doctoral studies are carried out according to the individual study plan, which is prepared by the supervisor in the beginning of the study in cooperation with the doctoral student. The individual curriculum specifies all the duties determined in accordance with the BUT Study and Examination Rules, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are time-bound throughout the study period, they are scored and fixed at fixed deadlines.
Students will write and pass tests of obligatory subject Exam in English before the state doctoral examination, compulsory elective courses in view of the focus of his dissertation, whereas at least two are selected from: Mathematical Modelling of Electrical Power Systems, New Trends and Technologies in Power System Generation, Selected problems from power electronics and electrical drives, Topical Issues of Electrical Machines and Apparatus), and at least two optional subjects (English for PhD students; Quoting in Scientific Practice; Resolving Innovation Assignments; Scientific Publishing from A to Z).
The student may enroll for the state doctoral exam only after all the tests prescribed by his / her individual study plan have been completed. Before the state doctoral exam, the student draws up a dissertation thesis describing in detail the aims of the thesis, a thorough evaluation of the state of knowledge in the area of the dissertation solved, or the characteristics of the methods it intends to apply in the solution.
The defense of the controversy that is opposed is part of the state doctoral exam. In the next part of the exam, the student must demonstrate deep theoretical and practical knowledge in the field of electrical engineering, electronics, electrical machines, and electrical apparatus. The state doctoral examination is in oral form and, in addition to the discussion on the dissertation thesis, it also consists of thematic areas related to compulsory and compulsory elective subjects.
To defend the dissertation, the student reports after the state doctoral examination and after fulfilling conditions for termination, such as participation in teaching, scientific and professional activity (creative activity) and at least a monthly study or work placement at a foreign institution or participation in an international creative project.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study the students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

  1. Advanced testing of protection systems using real-time simulator

    New technologies of power system behaviour research during transient phenomena open the area of advanced analysis focused to large protection systems operation during faults. Tha main aim of this disertation is to extend possibbilities of real time simulator RTDS about simultaneous tests in real time. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Toman Petr, prof. Ing., Ph.D.

  2. Algorithm for the protection system adaptation

    There are currently two main trends of development in protecting distribution networks with distributed generation. The first is systems that require enhanced, usually fast, and reliable communication between components to operate. They are therefore systems that use the knowledge of the parameters of a large part of the network for protection purposes and can adapt the parameters of the protection functions to the current operating state of the network based on this knowledge. The second less observed trend is protection systems that do not need to know network parameters for their function and usually use machine learning or prediction algorithms and their combination. The dissertation thesis is focused on research of suitable algorithms for parameterization of protective functions, which will use prediction of network instability based on voltage events monitoring. The adaptive protection function algorithm will be optimized for central protection of the power substation and will be based on changing the parameters of the central protection functions when changing the operating mode or changing the configuration of the protected part of the distribution system.

    Tutor: Orságová Jaroslava, doc. Ing., Ph.D.

  3. Centralized protection systems

    Centralized protection system is based on the monitoring of currents and voltages in distribution network through modern transducers with digitized outputs in accordance with the Sampled Values (SV) protocol according to IEC 61850-9-2. The work is focused on research of new protective features built on the possibility of these converters (high linearity and accuracy measurement, dynamic correction of measured values) as well as the concentration measured variables in one place (Process Bus). Its aim is to program functional application for monitoring and protecting specific part of distribution network that will use advanced protection algorithms and completely new functionalities for centralized systems of protection, control and optimization of power systems. The theme of this work cover besides power systems also information technology. Knowledge of computer networks, development of realtime applications and design of user interfaces for data presentation will be applied. Therefore, this work is recommended to candidates who have completed the information technology studies.

    Tutor: Orságová Jaroslava, doc. Ing., Ph.D.

  4. Conducted disturbances in power systems in audio-frequency range

    Increasing deployment of power converters in distribution systems leads to rise in high-frequency conducted disturbance level related to the converters switching frequencies. The switching disturbances occur dominantly in frequency range from 2 kHz to 150 kHz. Current experience shows that such disturbance may lead to serious malfunction of grid-connected sensing, measuring and/or controlling systems of analog or digital nature. At the same time there is significant gap in EMC coordination and standardization since the frequency range was for a long time out of interest. It is just between low-frequency disturbances connected to power quality and radio-frequency disturbance. The project is focused firstly on development of suitable measuring apparatus and procedure to monitor the disturbances in distribution systems in the audio-frequency range. Then origin and propagation of the disturbance should be studied and finally EMC concept is expected to be proposed. The theme takes a part of research project in cooperation with Czech utilities and with foreign universities (Germany, Italy). An intership at a foreign research institution, for instance TU Dresden, DE, is expected. Ask for more details at drapela@vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  5. Constrained models of electric machines

    The doctoral thesis is focused on constrained modeling of electric machines, i.e., construction of analytical models including electrical, magnetic, mechanical and thermal effects in the machine.

    Tutor: Cipín Radoslav, doc. Ing., Ph.D.

  6. Control and Protection on AC/DC Hybrid Microgrids

    Future trends in the electrical power engineering predict the development of dispersed generation, accumulation and microgrids. With respect to the output voltage of the photovoltaic panels and the batteries there are integral parts of the development of microgrids also DC installations and hybrid AC / DC grids. The aim of PhD study is to analyse the key challenges of hybrid AC / DC networks operation and to propose a methodology for cost effective voltage and current measurements for systems of adaptive control and protection respecting eg. different levels of short circuit power in all operating conditions, specific characteristics of DC current at fault clearance. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Toman Petr, prof. Ing., Ph.D.

  7. Control and Protection on AC/DC Hybrid Microgrids

    Future trends in the electrical power engineering predict the development of dispersed generation, accumulation and microgrids. With respect to the output voltage of the photovoltaic panels and the batteries there are integral parts of the development of microgrids also DC installations and hybrid AC / DC grids. The aim of PhD study is to analyse the key challenges of hybrid AC / DC networks operation and to propose a methodology for cost effective voltage and current measurements for systems of adaptive control and protection respecting eg. different levels of short circuit power in all operating conditions, specific characteristics of DC current at fault clearance. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Toman Petr, prof. Ing., Ph.D.

  8. DC Power Systems Voltage Quality

    With increasing number of DC power network related applications, necessity of the power/voltage quality assessment in those DC Power Systems can be expected. The aim of the work is to develop DC voltage quality indices starting from DC traction systems and AC public distribution systems voltage quality assessment practice. The theme takes a part of a research project in cooperation with K M B systems company. An intership at a foreign research institution, for instance Università degli Studi della Campania "Luigi Vanvitelli", is expected. More information: drapela@feec.vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  9. Development and optimization of protection functions for precise electronic current and voltage transducers

    The dissertation will be focused on development of new extended protection functions optimized for distribution networks which would make use of the advantages of current or voltage transducers with a digitalized output. Thanks to the possibility of secondary signal correction and loss-free transmission of monitored signal, these transducer types offer a number of advantages when compared to the conventional solution on the basis of instrument transformers, such as high linearity, high accuracy in the wide frequency range, the possibility of temperature, phase displacement and amplitude correction and suchlike. Thanks to these precision transducers it is possible to use data monitored with high accuracy in the range from operating currents to the area of short-circuit currents without a danger of their saturation. Thanks to synergy of the project targets with modern electronic current transducers, the research activities will be also focused on the research of the methodology for evaluation of accuracy and operational qualities of new types of electronic transducers. The condition for successful defense of this work is to complete at least one month long internship at a foreign university. At present, the Aalto University (Finland) may be considered relevant, but the specific place will be updated during Ph.D. study period.

    Tutor: Topolánek David, doc. Ing., Ph.D.

  10. Development of technical innovations in the context of energy management

    The research and development activities within the dissertation thesis deal with energy management in the field of tension between legislation-driven energy policy as a strategic task and reduction of energy demand. Methods and models leading to increased energy efficiency will be analyzed and evaluated to propose a energy management as a solution for higher efficiency. Opportunities and limits of as energy management system will be provided.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  11. Drivers with high immunity to du/dt slope for power switching transistirs SiC MOS-FET and GaN MOS-FET

    The core of the theme consists in problems of gate driving of power switching transistors SiC MOS-FET and GaN-MOSFET. These transistors represent the top-technology in power electronics nowadays. The extremely low switching times enabled with these technologies bring an advantageous possibility to decrease switching losses in the power circuits of the converters. However, at the same a strong influence growth of several specific parasitic effects can be observed. These parasitic effects correspond also to the problems of driving strategy and topology. Therefore searching for the optimum concept solution and its suitable hardware realization represent a crucial theme in power electronics. The mandatory foreign internship should be realized at TU Wien (Austria) or TU Delft (Netherlands).

    Tutor: Procházka Petr, Ing., Ph.D.

  12. High-speed electrical machines

    This work is focused on research and development of high-speed electrical machines. Beside the induction machines, the permanent magnet synchronous machines and the synchronous reluctance machines are one of the most frequently used types of high-speed machines. The aim of this topic is to define a crucial areas of design, to choose the promising type of machine, to introduce the method of design/calculation, to verify this method, to develop/improve the FEM models, to support the manufacturing of the laboratory sample, to verify the parameters of designed machine. The mandatory foreign internship should be realized at Lappeenranta University of Technology, Finland.

    Tutor: Vítek Ondřej, doc. Ing., Ph.D.

  13. Charging stations for electric vehicles as an element of electricity system

    The urgent need for the development of charging stations for hybrid cars and electric vehicles (EV) still shows as important in the context of the current gradual development of this type of transport. The theme is focused on energy analysis of the concept of charging stations with integrated accumulation and renewable energy sources. Based on the concept will be developed the mathematical models. It will be performed energy-economic analysis in order to verify the possibility of using the concept in this way to reduce the load of the network at the connection point. Direct possibility of cooperation on concrete solution with an energy company is expected. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  14. Chromatic flicker perception modeling in flickermeters

    Visible light variation may leads to disturbance of human’s visual perception. The origin of such negative effect is in the eye anatomy and physiology. The major influence on the flickering light perception can be found in eye viewing field, photoreceptors (cones of three types and rods) and their distribution at retina as a part of eye anatomy and in eye adaptation mechanisms like pupil, photo-chemical and neural adaptation (response) to luminous variations (including the photoreceptors spectral luminous efficiency) as a part of eye physiology. The human eye can be seen as specialized luminance multi-detector where the stimulation contrast is as important as radiant density. There are differentiated three types of flicker: temporal, spatial and chromatic. All of these flickers are joyless and may involve many psychological interactions. In artificially illuminated areas, lamps light variations due to variations in supply voltage may also lead to flicker perception. Such lamp possibly will produce light with time-varying radiant flux and its spectral distribution. The lamps flickering is produced by a voltage Phase Modulation (PM), mainly by Phase Jumps (PJ) and by Interharmonic Voltages (IH) superimposed on a voltage waveform. Thesis is focused on the voltage fluctuation to lamps time-varying radiant flux and its spectral distribution fluctuation transfer analysis and on the utilization of the analysis results for development and realization of an objective flickermeter having response to both the temporal luminance and chromatic flicker. The thesis aim is the realization of the new flickermeter types implemented in LabVIEW, with the experimental verification. The thesis covers theoretical-analytical, developmental and also practical-experimental part of study. An intership at a foreign research institution is expected. More information: drapela@feec.vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  15. Increasing measurement accuracy in a HV laboratory.

    Today's hot topic is to guarantee the accuracy and repeatability of measurements in HV laboratories while using withstand test systems and other diagnostic tools. Modern measuring instruments are enough complicated, precision requirements are increasing and complex measurement uncertainty is covered by periodic calibration. Furthermore, determining and ensuring the temporal stability of the measured quantities, this becomes more important in older or aging test systems. The thesis is focused on increasing the accuracy of DC, AC and impulse test sources measurement, calibration of their voltage dividers and current shunts, traceability to calibration standards according to metrology requirements. Another focus of thesis is to increase measurement accuracy and eliminate external influences in diagnostic tools for measuring insulation of power equipment and dielectric material - such as - partial discharge meters and their calibration, electronic bridges and associated normal capacitors, electrical parameters meters for solid and liquid dielectric materials. The monthly internship abroad will be a part of PhD study at one of these research institutes: Aalto University (Aalto, Finland), Graz University of Technology (Graz, Austria) or TUKE (Kosice, Slovakia).

    Tutor: Krbal Michal, Ing., Ph.D.

  16. Integrated Glare Metric for Various Lighting Applications

    Glare is a negative state of human vision that causes not only unpleasant feeling but also have negative influence on the performance of human vision system. For the glare evaluation there are many equations that are always used for specific application. For interior lighting systems it is used metric UGR. For glare evaluation caused by daylight from windows it is used metric DGP, DGI etc. However, there are disadvantages of these metrics. They are adapted for specific type of lighting system (e.g. offices, sport grounds, street lighting etc.) and specified for typical luminaires (e.g. luminaires with fluorescent lamps and opal diffusor, daylight windows etc.) However, they are all based on empirical data and therefore not on the physiological and psychological model. From this reason it is not possible to use these metrics to new aplications. This problem occurs especially in the current situation, where LED technologies started to dominate the market. The LEDs radiate from the very small surface and with the specific spectrum. The task of this thesis is to partially find answer to question: “What is the physiological and psychological mechanism that is responsible for unpleasant feelings caused by higher luminance”. On the basis of this mechanism the model of discomfort glare caused by high contrasts should be carried out. This model should be generalized and used in lighting systems. This topic is highly supported by international commission for illumination CIE and it is classed within the 10 strategic research goals in lighting technology.

    Tutor: Škoda Jan, Ing., Ph.D.

  17. Islanding operation of distribution systems with distributed generation

    The aim is to develop technically correct, reliable and verified concept for islanding operation (IO) of dedicated part of distribution system with distributed generation dealing mainly with definitions of conditions necessary to successful transition to IO, correct and reliable detection of conditions for transition to IP and back to parallel operation, development of power sources (loads) control strategy, etc. An intership at a foreign research institution, for instance Università degli Studi della Campania "Luigi Vanvitelli", is expected. For more information email to: drapela@feec.vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  18. Losses in windings and magnetic circuits in power electronics

    Research and modelling of losses in chokes and transformers operating in various regimes in power electronis will be the subject of the topic. The influence of skin-effect and poximity effect has to be quantified in a practically usable way. This is solved in a simplified way today without taking into consideration the variability of the operating regime. Also the core losses and influence of air gaps leakage fluxes etc. have to be analyzed systematically. All results will be verified with measurements. The measurements realization will be an interesting and dificult task itsself. This is why a realization of converters of various types will be included to enable the practical verification. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Vorel Pavel, doc. Ing., Ph.D.

  19. Mathematical modeling of Li-ion batteries

    The doctoral thesis is focused on mathematical model constructions of Li-ion batteries. Created models will find use in analyzing the behavior of battery-powered electrical drives with a focus on electric vehicles. Ph.D. student has to absolve an internship at a foreign university with a minimum length of one month.

    Tutor: Cipín Radoslav, doc. Ing., Ph.D.

  20. Methods of testing of insulation systems in distribution network

    The topic is aimed at the analysis of present method for testing of insulation of devices for 110 kV and 22 kV distribution networks. The solver will deal with insulation testing methodology under electric stress of high ac, dc and impulse voltages in test laboratories, dry and wet tests, pollution test, corona and voltage distribution tests on insulators. With respect of this tests the measurement of insulation resistance, dielectric response analysis, recovery voltage, capacitance and tan, partial discharges, must be analyzed as well. This work assumes introduction to relevant national and international standards for above mentioned tests, which the technical project of HV laboratory should be based on.

    Tutor: Orságová Jaroslava, doc. Ing., Ph.D.

  21. Modeling and Control of Cascade H-bride High Voltage Three Phase Inverter.

    The main goal is focused to moeling and control of high voltage, high power three phase cascade H-bridge inverter. Teoretical results will be verified with mathematical models and then will be implemented to real prototype.

    Tutor: Pazdera Ivo, Ing., Ph.D.

  22. Modern methods of electrical machine parameter estimation

    The doctoral thesis is focused on analyzing the possibilities of electrical machine parameter estimation in various operating modes with a focus on asynchronous motors. The results will be used to construct accurate mathematical models, which also will be used in the design of modern control structures, e.g. predictive control.

    Tutor: Cipín Radoslav, doc. Ing., Ph.D.

  23. Optical diagnostics of electric arc

    Evaluation of electric arc temperature and particle density using optical emission spectroscopy. High speed camera imaging of an arc discharge channel. Characterization of construction materials diffusion into discharge volume and its influence on the electric arc properties. An internship on the INP Greifswald is mandatory during this doctoral study. The minimal internship length is one month.

    Tutor: Kloc Petr, Mgr., Ph.D.

  24. Optimization of plasma radiation transfer calculations

    Calculation of optimal band distribution for mean absorption coefficients. Evaluation of the electric arc configuration and plasma composition on frequency band boundaries. Comparison of different numerical optimization algorithms and their application to the problem of radiative heat transfer in plasma. An international internship is mandatory during the doctoral study. Expected place of internship is LAPLACE laboratory of the University of Toulouse.

    Tutor: Kloc Petr, Mgr., Ph.D.

  25. Primary and secondary battery parameter estimation

    The doctoral thesis is focused on analyzing the possibilities of primary and secondary battery parameter estimations. Designed estimation algorithms will be used in analyzing operation modes of various battery-powered electric drives and electric tools. Ph.D. student has to absolve an internship at a foreign university with a minimum length of one month.

    Tutor: Cipín Radoslav, doc. Ing., Ph.D.

  26. Probabilistic approach for optimization of distribution system operation

    The dissertation will be focused on research of a new probabilistic approach for evaluation of optimal operation of distribution network based on calculation and evaluation of fatal probability, probability of faults and continuity of supply. The methodology will respect already applied and new approaches optimized not only for national but also for international distribution networks operation conditions. The topic of the dissertation encompasses several areas that are focused on i.e. calculating of the earth fault levels, evaluating of fault duration and frequency, as well as area focused on calculation and analysis of the potential distribution on surface for evaluation of possible levels of touch and step voltages, transferred potential to low-voltage earthing systems and also assessment of the probability of human touch presence, fault ignition and touch/fault coincidence. The condition for successful defense of this work is to complete at least one month long internship at a foreign university. At present, university of TU Graz (Austria) may be considered relevant, but the specific place will be updated during Ph.D. study period.

    Tutor: Topolánek David, doc. Ing., Ph.D.

  27. Research and Development of Multi-phase Electrical Machines

    Nowadays, multi-phase machines are considered for applications with high requirements for reliability, e.g. in aerospace. Thereby, multiple three-phase systems or single systems with a number of phases higher then five is considered. The work is focused on the theoretical investigation of multi-phase fault-tolerant machines, their operation characteristics, and the practical design approach. Particularly research will be focused on the improvement of efficiency, torque ripple, minimization of unwanted radial force components to minimize vibration and thus noise. The result of the work is going to be verified on prototypes. The results of the research will be continuously presented in relevant scientific conferences and in the form of scientific papers in pertinent journals indexed in Scopus or Web of Science. Ph.D. student has to absolve an internship at a foreign university with a minimum length of one month

    Tutor: Bárta Jan, Ing., Ph.D.

  28. System for distribution network operation optimization

    The Ph.D. thesis is focused on the development of adaptive system for optimization of the low and medium voltage network operation with respect to: voltage level, reactive power flows, voltage unbalance, load flow, etc. The system itself will also ensure fault location inside such networks and automatic reconfiguration. Designed system will be utilizing information from monitoring and control devices that are intended for installation in the distribution system by the operator (smartmetering, reclosers, smart DTS, etc.). To fulfill this task, a solution based on an opensource platform will be used, which will not exclude the integration of the proposed solution into dispatching control and planning systems in the future. The condition for successful defense of this work is to complete at least one month long internship at a foreign university. At present, the Aalto University (Finland) may be considered relevant, but the specific place will be updated during Ph.D. study period.

    Tutor: Topolánek David, doc. Ing., Ph.D.

  29. System for monitoring of power quality and energy power flows in buildings with renewable energy sources – demand side management

    Evaluate current options (worldwide) management and monitoring of building energy systems with renewable energy sources. Design and create a unified system of regulation and control for the system, which will include heat pumps, solar thermal collectors and hybrid energy system with accumulation (photovoltaics, wind turbines) in order to achieve the maximum possible interactions between different sources and devices with respect to environmental influences. Underlying assumption of the proposed system is based on the concept of using PLC. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  30. The control of public lighting in Smart City

    This topic reflects current trends of the development of smart technologies in the area of human activities. Public lighting operations certainly belong in this group. The goals of this doctoral study are to research connections of night illuminaton problems with areas of visual sense, environment aspects, safety and power consumption. According to basic tasks in the area of Smart public lighting regulation of technical-photometric parameters of the luminaires is expected to be developed. Regulation should be dependent not only on time but also on the traffic density. Therefore, the direction of the research should lead for connection of above-mentioned areas and finding ideal equilibrium between them. It is expected to get those results with help of technical-photometric simulations, but also from practical objective and subjective testing, where evaluations should be carried out from data from at least 100 respondents. Final results should be used for standard novelizations.

    Tutor: Škoda Jan, Ing., Ph.D.

  31. The voltage regulation in distribution networks with a high proportion of stochastic sources

    An increasing proportion of stochastic resources in networks affect the voltage stability during the day. Variable power delivery to the grid from these sources causes fluctuations in voltage variations during the daily diagram. Current devices used to the voltage regulation are unable to provide the required voltage level at all points of the network. The aim is to describe new possibilities and means for voltage regulation in distribution system and design concept of this regulation with regard to the current development of the resource base. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  32. Utilization of advanced revenue meters for distribution systems control and automation

    The aim is to define expected functionalities of the revenue meters and their integration to individual security-technical layers of a distribution system management, furthermore to optimize metering features and data concentration for individual tasks. An intership at a foreign research institution, for instance TU Dresden, DE, is expected. For more information email to: drapela@feec.vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

1. round (applications submitted from 01.04.2020 to 15.05.2020)

  1. Electric power and energy components definition and measurement in future distribution systems

    The topic is aimed to critical revision of power components theories taking into account physical merits of measured phenomena related to nonlinear, dynamic and active distribution systems. It is expected to develop a metrics for revenue meters which will cope correctly with nowadays phenomena in order to measure really passing active energy. The theme takes a part of research project in cooperation with Czech utilities and with foreign universities. An intership at a foreign research institution, for instance Università degli Studi della Campania "Luigi Vanvitelli", is expected. Ask for more details at drapela@vutbr.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  2. Mathematical model of contact material erosion in power switching devices

    A set of measurements with various contact pairs will be carried out in order to obtain necessary input data for creation of appropriate mathematical model of contact erosion. Dependence of contact erosion rate on parameters of switching circuit (current, voltage, power factor) for various operational states (rated operational power, overload, short circuits) will be acquired. Within the frame of Ph.D. theses, methodology of contact erosion assessment will be proposed. In the end, the mathematical model will be verified with real behavior of device contact systems. The results of research will be continuously presented in relevant scientific conferences (e.g. Symposium on Physics of Switching Arc, etc.) and in the form of articles in pertinent journals indexed in Scopus or Web of Science. As a part of the study, internship in the selected foreign institute will be undertaken.

    Tutor: Valenta Jiří, Ing., Ph.D.

  3. Mathematical model of contact material erosion in power switching devices

    A set of measurements with various contact pairs will be carried out in order to obtain necessary input data for creation of appropriate mathematical model of contact erosion. Dependence of contact erosion rate on parameters of switching circuit (current, voltage, power factor) for various operational states (rated operational power, overload, short circuits) will be acquired. Within the frame of Ph.D. theses, methodology of contact erosion assessment will be proposed. In the end, the mathematical model will be verified with real behavior of device contact systems. The results of research will be continuously presented in relevant scientific conferences (e.g. Symposium on Physics of Switching Arc, etc.) and in the form of articles in pertinent journals indexed in Scopus or Web of Science. As a part of the study, internship in the selected foreign institute will be undertaken.

    Tutor: Valenta Jiří, Ing., Ph.D.

  4. Research and Development of Electrical Machines by means of Topology Optimization

    The doctoral thesis is focused on topology optimization in which the design space is discretized into small elements and each element can independently be assigned with particularly defined material properties, e.g., electrical steel, air or magnet. Thus, the definition of the machine structure is much more flexible. On the other hand, computational effort for the optimization significantly increases and measures need to be implemented to avoid 'detached particles'. The doctoral work will be focused on the implementation of suitable geometry definitions and a comparison of the approach with parametrized topologies. The expected analyzed machines are various types of line-start synchronous machines for one and three-phase grid. The results of the research will be continuously presented in relevant scientific conferences and in the form of scientific papers in pertinent journals indexed in Scopus or Web of Science. Ph.D. student has to absolve an internship at a foreign university with a minimum length of one month

    Tutor: Bárta Jan, Ing., Ph.D.

  5. The identification of power system faults

    New technologies of measurement and communications bring new possibilities of synchronous measurement of faraway substations. The main aim of research is detailed analysis of Electrical values during power system faults and proposal of method for their identification. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Toman Petr, prof. Ing., Ph.D.

  6. Use of accumulation to support the energy system

    Stability of electric power supply is - as a term - closely related with electrical energy production gained from renewable power sources (mainly from wind and photovoltaic power plants). The research will be focused on possibilities of accumulation of electric energy produced from renewable power sources with the help of modern technologies while focusing on hydrogen (VRB systems) utilization, accumulators based on Lithium and pumped storage hydro plants for its accumulation. The result of the work will be the draft measures in the energy system, which can solve time disproportion between electrical energy supply and take-off from the renewable power sources. The solution is connected with computer simulation (Matlab) and experimental measuring on a real model. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  7. Use of the cooperation of energy storage and renewable energy systems to support the distribution network operation

    The thesis is focused on the design and the development of a model representing the cooperation of battery and photovoltaic systems connected via hybrid inverters into the distribution network (DG). The main object of the research is to specify the possible use of this concept to support of the distribution network operation, i.e. voltage regulation, reactive power compensation, distribution congestion relief, asymmetry compensation, power microoutages limitation, backup source for crisis management, distribution capacity compensation, etc. Research results are the definition and the establishment of criteria for the inverter management and for using of this concept within the system network services at level of low and medium voltages. The research is also targeted on the identification and the development of other new possibilities for DG operation supporting.

    Tutor: Ptáček Michal, Ing., Ph.D.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPC-ET1Electrotechnical materials, material systems and production processescs4Compulsory-optionalDrExS - 39yes
DPC-EE1Mathematical Modelling of Electrical Power Systemscs4Compulsory-optionalDrExS - 39yes
DPC-ME1Modern Microelectronic Systemscs4Compulsory-optionalDrExS - 39yes
DPC-RE1Modern electronic circuit designcs4Compulsory-optionalDrExS - 39yes
DPC-TK1Optimization Methods and Queuing Theorycs4Compulsory-optionalDrExS - 39yes
DPC-FY1Junctions and nanostructurescs4Compulsory-optionalDrExK - 39 / S - 39yes
DPC-TE1Special Measurement Methodscs4Compulsory-optionalDrExS - 39yes
DPC-MA1Statistics, Stochastic Processes, Operations Researchcs4Compulsory-optionalDrExS - 39yes
DPC-AM1Selected chaps from automatic controlcs4Compulsory-optionalDrExS - 39yes
DPC-VE1Selected problems from power electronics and electrical drivescs4Compulsory-optionalDrExS - 39yes
DPC-JA6English for post-graduatescs4ElectiveDrExCj - 26yes
DPC-RIZSolving of innovative taskscs2ElectiveDrExS - 39yes
DPC-EIZScientific publishing A to Zcs2ElectiveDrExS - 26yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPC-TK2Applied cryptographycs4Compulsory-optionalDrExS - 39yes
DPC-MA2Discrete Processes in Electrical Engineeringcs4Compulsory-optionalDrExS - 39yes
DPC-ME2Microelectronic technologiescs4Compulsory-optionalDrExS - 39yes
DPC-RE2Modern digital wireless communicationcs4Compulsory-optionalDrExS - 39yes
DPC-EE2New Trends and Technologies in Power System Generationcs4Compulsory-optionalDrExS - 39yes
DPC-TE2Numerical Computations with Partial Differential Equationscs4Compulsory-optionalDrExS - 39yes
DPC-FY2Spectroscopic methods for non-destructive diagnostics cs4Compulsory-optionalDrExS - 39yes
DPC-ET2Selected diagnostic methods, reliability and qualitycs4Compulsory-optionalDrExS - 39yes
DPC-AM2Selected chaps from measuring techniquescs4Compulsory-optionalDrExS - 39yes
DPC-VE2Topical Issues of Electrical Machines and Apparatuscs4Compulsory-optionalDrExS - 39yes
DPC-JA6English for post-graduatescs4ElectiveDrExCj - 26yes
DPC-CVPQuotations in a research workcs2ElectiveDrExP - 26yes
DPC-RIZSolving of innovative taskscs2ElectiveDrExS - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPC-QJAEnglish for the state doctoral examcs4CompulsoryDrExS - 3yes