Course detail
Physical Optics
FIT-FYOAcad. year: 2025/2026
Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography, holography code, reconstruction of optic field. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Fundamentals of physics at secondary school level
Rules for evaluation and completion of the course
- Mid-term exam - up to 10 points
- Project - up to 30 points
- Written exam - up to 60 points
Aims
The students will learn the basic principles of the physical optics needed for computer graphics. They will extend their general knowledge of optics and get acquainted with the modern optics. They will also learn how to apply the gathered knowledge on real tasks. Finally, they will get acquainted with further physics principles important for computer graphics.
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
Schroeder, G.: Technická optika, SNTL, Praha, ČR, 1981
Classification of course in study plans
- Programme MITAI Master's
specialization NSEC , 0 year of study, summer semester, elective
specialization NNET , 0 year of study, summer semester, elective
specialization NMAL , 0 year of study, summer semester, elective
specialization NCPS , 0 year of study, summer semester, elective
specialization NHPC , 0 year of study, summer semester, elective
specialization NVER , 0 year of study, summer semester, elective
specialization NIDE , 1 year of study, summer semester, compulsory
specialization NISY , 0 year of study, summer semester, elective
specialization NEMB , 0 year of study, summer semester, elective
specialization NSPE , 0 year of study, summer semester, elective
specialization NEMB , 0 year of study, summer semester, elective
specialization NBIO , 0 year of study, summer semester, elective
specialization NSEN , 0 year of study, summer semester, elective
specialization NVIZ , 0 year of study, summer semester, elective
specialization NGRI , 1 year of study, summer semester, compulsory
specialization NADE , 0 year of study, summer semester, elective
specialization NISD , 0 year of study, summer semester, elective
specialization NMAT , 0 year of study, summer semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Seminar
Teacher / Lecturer
Syllabus
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Project
Teacher / Lecturer
Syllabus
Individually assigned projects; it is expected that the "programming part" of the assignment will be consulted and evaluated in other course (more computer science oriented).