Course detail
Modelling in Engineering Practice
FSI-RMVAcad. year: 2024/2025
The course offers an overview of basic knowledge in these fields: theory of systems, structure of the world of technology, theory of modelling, theory of experiment, design of technical objects, theory of statistical data processing, theory of failures and limit states, theory of deterministic chaos, theory of synergetics. It offers a possibility of a comprehensive view of technical life of technical objects.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Active participation in exercises is necessary. Organization of lectures is specified by the teacher at the beginning of semester.
Aims
Knowledge on structures, properties and behaviour of various systems, above all technical, on approaches and methods of solving stress-strain, stability and reliability problems of these systems, especially by computational and experimental modelling with application of statistical methods. Basic knowledge on deterministic chaos in behaviour of non-linear dynamic systems.
Students will get abilities of correct and pragmatic formulation of problems concerning technical systems, basic knowledge on the "art of modelling", on effective exploitation of various types of modelling in solving problems, and the ability of investigation of all processes in systems in the sense of the possibility of a deterministic and stochastic chaos.
Study aids
Prerequisites and corequisites
Basic literature
Janíček, P.: Systémové pojetí vybraných oborů pro techniky, 2006 (CS)
Wright I.V. Design methods in engineering and product design. McGraw-Hill, 1998 - Počet stran: 285 (EN)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Beginning and advancement of system approach. Forming of system methodology like methodology aided of Theory of systems. System approach (attributes of system approach).
3. System thinking, system branches, system algorithm - system conception. Specifics of hard, soft and mixed systems.
4. System terminology - definition of basic system terms.
5. Continuation of system terminology.
6. Problem situation, problem, scenario of causal problem solving. Hard and soft system - specificity of problem solution.
7. System concept of experiment.
8. System concept of modelling.
9. System concept of calculation modelling (classical, simulation, optimization, identification of objects, identification of systems.
10. System concept of limit states.
11. System concept of mathematical statistic.
12. Principles of chaos theory.
13. Principles of self-organization theory (synergism in first and second sense).
Elearning