Course detail
Aircraft Structure
FSI-OSZAcad. year: 2024/2025
Structure and strength of aircraft acquaints students with the basic conceptual arrangements of aircraft in relation to other fields, especially aerodynamics, flight mechanics and aircraft materials. Furthermore, the course focuses on the description of individual airframe components with emphasis on the basic principles of load determination, design and strength analysis. An integral part of this knowledge is the introduction to the theory of thin-walled structures and their calculation.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
90% participation in exercises, elaborating a protocol, presentation of all tasks from exercises.
Aims
The course Aircraft Structure and Strength enables students to gain knowledge about aircraft design, load calculation and strength analysis. The student will learn to work with prescription requirements and on the basis of them design part.
Study aids
Prerequisites and corequisites
Basic literature
Mertl, V.: Konstrukce a projektování letadel, Vysoké učení technické v Brně, Fakulta strojního inženýrství, Brno, 2000. (CS)
Roskam, J.: Airplane design – Part V: Component weight estimation, Roskam aviation and engineering corporation, Ottawa, 1985. (EN)
SLAVÍK, S.: Stavba letadel. Praha: Vydavatelství ČVUT, 1997. (CS)
Recommended reading
Niu, C. Y.: Airframe structural design, 2nd ed.,Conmilit press LTD., Hong-kong, 1988. (EN)
Píštěk A., Grégr O., Kahánek V., Böhm R.: Pevnost a životnost letadel, Brno, 1987 (CS)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Aircraft loading. Maneuvers, gusts, ground loads. Multiple.
3. Airworthiness requirements. Definitions and terms. Envelopes. Load cases
4. Wing structure, external shapes, load. Wing mechanization. Flaps, slots, spoilers, brakes. Constructional solutions.
5. One, two or more beam structures, strength calculation
6. Single and multi-cavity construction under general load.
7. Loads of joints and hinges
8. Horizontal and vertical tail surfaces. Structural design and loading
9. Hull. Purpose, requirements and hull design. Pressurized cabins. Lattice structures.
10. Management. Management systems. Design of control elements.
11. Power unit, engine location, engine bed.
12. Landing gear. Requirements, classification and arrangement. Load and chassis design.
Laboratory exercise
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus
2. Gust and maneuver envelopes.
3. Wing loading.
4. Tail loading
5. Calculation of beams
6. Single cavity beam structure.
7. Two-chamber beam construction.
8. Engine bed strength calculations
9. Loading of hinges and joints
10. Rivet and glued joints
11. Landing load loads
Elearning