Course detail

Modern Electronic Circuit Design

FEKT-DKA-RE1Acad. year: 2023/2024

Students become familiar with advanced methods for computer modeling of electronic circuits (steady-state calculation, approximate symbolic analysis, circuits with transmission-lines, signal integrity analysis in discrete and integrated applications, modeling of systems with fractional-order elements, methods of parameter variability analysis in electronic systems); analog integrated circuit design (basic elements of CMOS technology, design of basic cells, analysis of special problems - ESD protection, latch-up, EMC of integrated circuits); circuit optimization (formulation of objective function, local and global methods, multicriterial problems).

Language of instruction

English

Number of ECTS credits

4

Mode of study

Not applicable.

Entry knowledge

Knowledge of master mathematics (matrix calculus, differential equations, integral transformations, graph theory) and circuit theory (methods for equation formulation, device models, basic circuits) is requested.

Rules for evaluation and completion of the course

Two individual projects and their defense (2 x 50 points).
Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Aims

Lectures are focused on advanced methods for modeling, analysis, design, and optimization of discrete and integrated electronic circuits.
The graduate is able to (1) design basic blocks of electronic circuits; (2) formulate models and use advanced methods for simulation; (3) utilize conventional and non-conventional optimization methods for systems of general nature.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ALLEN, P.E., HOLBERG, D.L. CMOS Analog Circuit Design (3rd edition). Oxford University Press, 2012. ISBN: 978-0-199-93742-4. (EN)
DEB, K. Multi-objective optimization. In Search methodologies. Boston: Springer, 2014, pp. 403-449. ISBN: 978-1-461-46939-1. (EN)
NAJM, F.N. Circuit Simulation. Hoboken, NJ: Wiley-IEEE Press; 2010. ISBN: 978-0-4705-3871-5. (EN)
STUMPF, M. Time-domain Electromagnetic Reciprocity in Antenna Modeling. Hoboken, NJ: John Wiley & Sons, 2019. ISBN: 978-1-119-61237-7. (EN)

Recommended reading

BALANIS, C. A. Antenna theory: analysis and design. 4th ed. Hoboken, NJ: John Wiley & Sons, 2016. ISBN 978-1-118-64206-1. (EN)
STUMPF, M. Electromagnetic reciprocity in antenna theory. Hoboken, NJ: John Wiley & Sons, 2017. ISBN 978-1-119-46640-6. (EN)
RUSS, S. H. Signal Integrity: Applied Electromagnetics and Professional Practice. Springer, 2016. ISBN: 978-3-319-29758-3. (EN)
AZAR, T., RADWAN, A. G., and VAIDYANATHAN, S. Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications. Academic Press, 2018. ISBN: 978-0-128-16152-4. (EN)
ZJAJO, A.: Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms. New York: Springer, 2014. ISBN 978-94-007-7781-1. (EN)

Classification of course in study plans

  • Programme DKA-KAM Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKA-EKT Doctoral, any year of study, winter semester, compulsory
  • Programme DKA-EIT Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKAD-EIT Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKA-MET Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKA-SEE Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKA-TLI Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DKA-TEE Doctoral, any year of study, winter semester, compulsory-optional

Type of course unit

 

Guided consultation

39 hours, optionally

Teacher / Lecturer