Course detail

Aircraft Structure

FSI-OSZ-AAcad. year: 2023/2024

Structure and strength of aircraft acquaints students with the basic conceptual arrangements of aircraft in relation to other fields, especially aerodynamics, flight mechanics and aircraft materials. Furthermore, the course focuses on the description of individual airframe components with emphasis on the basic principles of load determination, design and strength analysis. An integral part of this knowledge is the introduction to the theory of thin-walled structures and their calculation.

Language of instruction


Number of ECTS credits


Mode of study

Not applicable.

Offered to foreign students

The home faculty only

Entry knowledge

Basic knowledge of general elasticity and strength. Basic knowledge of physics, kinematics and dynamics.

Rules for evaluation and completion of the course

The course-unit credit requirements 90% attendance at seminars. It is also necessary to submit completed and elaborated computational exercises. The exam is written.
90% participation in exercises, elaborating a protocol, presentation of all tasks from exercises.


The aim of the course is to acquaint students with basic structural units and their requirements in terms of their function and strength.
The course Aircraft Structure and Strength enables students to gain knowledge about aircraft design, load calculation and strength analysis. The student will learn to work with prescription requirements and on the basis of them design part.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Čalkovský A.: Konstrukce a pevnost letadel, , 0
Roskam J.: Airplane design, , 0
Mertl Vl.: Konstrukce letadel, , 0
Slavík S.,Stavba letadel, ČVUT, 1999

Recommended reading

Cutler J.: Understanding Aircraft Structures, , 0


Classification of course in study plans

  • Programme N-AST-A Master's, 1. year of study, winter semester, compulsory
  • Programme N-ENG-Z Master's, 1. year of study, winter semester, recommended

Type of course unit



65 hours, optionally

Teacher / Lecturer


1. Requirements for aircrafts.
2. Aircraft loading. Maneuvers, gusts, ground loads. Multiple.
3. Airworthiness requirements. Definitions and terms. Envelopes. Load cases
4. Wing structure, external shapes, load. Wing mechanization. Flaps, slots, spoilers, brakes. Constructional solutions.
5. One, two or more beam structures, strength calculation
6. Single and multi-cavity construction under general load.
7. Loads of joints and hinges
8. Horizontal and vertical tail surfaces. Structural design and loading
9. Hull. Purpose, requirements and hull design. Pressurized cabins. Lattice structures.
10. Management. Management systems. Design of control elements.
11. Power unit, engine location, engine bed.
12. Landing gear. Requirements, classification and arrangement. Load and chassis design.

Laboratory exercise

2 hours, compulsory

Teacher / Lecturer


1. Participation at aircraft structure test.


24 hours, compulsory

Teacher / Lecturer


1. Calculation of bars, Castiglian theorem.
2. Gust and maneuver envelopes.
3. Wing loading.
4. Tail loading
5. Calculation of beams
6. Single cavity beam structure.
7. Two-chamber beam construction.
8. Engine bed strength calculations
9. Loading of hinges and joints
10. Rivet and glued joints
11. Landing load loads