Course detail

Aircraft Materials and Technology

FSI-OLR-AAcad. year: 2022/2023

Relationships between compositions,processing effects, microstructures,properties and typical applications of selected aircraft materials. Special material requirements. Aluminium alloys, magnesium alloys, titanium alloys, high strength steels, nickel-base and cobalt-base superalloys, fibre and particle composites, nanocomposites and smart systems, structural polymers,structural ceramics, wood and plywood for aircraft structures. New research and development, international material standards and equivalents.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

The course Aircraft Materials makes students familiar with representative aircraft structural materials as well as with their optimal use. Students will be able to evaluate different material variants of aircraft structures according their strength, lifetime and damage tolerance.

Prerequisites

Basic knowledge of relations between composition, processing, structure and properties of structural materials. Basic terminology of physical metallurgy and material limit states.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

The course-unit credit requirements: 90% attendance at seminars. It is also necessary to submit completed and sophisticated computational exercises. Obtaining the credit is a condition for admission to the exam. The exam is written.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course Aircraft Materials is to inform students of present state in the area of structural materials for aircraft structures and to provide them with methodical and objective knowledge.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is compulsory. In case of justified absence, the missed seminar may be compensated with an individual assignment. Continuous checking is made by means of written tests. In case of a failure, it is required to repeat the test.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Cenek,M.-Jeníček,L.: Nauka o materiálu I,3. svazek, Neželezné kovy,Academia,Praha 1973
Hussey B., Wilson J.: Light Alloys. Directory and databook. Chapman&Hall, 1998
Middleton,D.H.: Composite materials in aircraft structures,Longman Group, 1990
ASM Handbook, Volume 21, Composites, ASM International, 2002
ASM Handbook, Vol. 02 Properties nad Selection of Nonferrous Alloys
Michna a kol.: Encyklopedie hliníku
Vlot A., Gunnink J. W.: Fibre Metal Laminates, ISBN 1-4020-0038-3
ASM Handbook Vol. 01 Properties and Selection: Irons, Steels and High Performance Alloys
F.C.Campbell: Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2006. ISBN-13: 978-1-85-617495-4. (EN)

Recommended reading

Ustohal,V.: Letecké materiály,VUT Brno,1988
Michna, Š. a kol.: Encyklopedie hliníku, Prešov 2005, ISBN 80-89041-88-4
Baker, A.: Composite materials for aircraft structures, AIAA 2004

eLearning

Classification of course in study plans

  • Programme N-AST-A Master's, 1. year of study, winter semester, compulsory

  • Programme M2E-A Master's

    branch M-IND , 1. year of study, winter semester, compulsory

  • Programme N-ENG-Z Master's, 1. year of study, winter semester, elective

  • Programme CŽV Lifelong learning

    branch CZV , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1.Introduction to the study of aviation materials

2.Aluminum alloys for aerospace, heat treatment 

3. Magnesium and titanium alloys, heat treatment

4. Steel in aerospace, heat treatment

5. Special alloys in aviation (Ni. Co, ..)

6. Composite materials, sandwiches

7. Nanomaterials and smart materials

8. Corrosion of metal materials used in aviation and protection against it

9. Wood, glass and plastics for aircraft construction

10. Introduction to aircraft production technology

11. Technological division of the airframe

12. Surface forming of light alloys

13. Spatial forming

Laboratory exercise

2 hours, compulsory

Teacher / Lecturer

Syllabus

6.  Testing of aluminium alloys
12.Comparison between properties of metals and composites

Exercise

11 hours, compulsory

Teacher / Lecturer

Syllabus

1.Standardization of aircraft materials
2.Standards of aluminium alloys
3.Choice of material for given airframe component
4.Design of airframe structure prom Mg alloys
5.Test No 1
6.A Lab exercise
7.Schaeffler diagram of high alloy steels
8.Test No 2
9.Properties of high temperature alloys
10.Properties of wood for light aeroplanes
11.Technological division of the airframe

12. A lab exercise

13. Technological procee of rib production

 

eLearning