Course detail

Computer Aided Technology

FSI-DPPAcad. year: 2021/2022

The lectures and seminars will enable students to acquire knowledge of mostly exploited regions of computer support in technologies of forming, welding and heat treatment. The basic part of the course is the work with simulation software using the finite element method and mastering the fundamentals of using software in direct support of technologists work. Mastering the work with above-mentioned software enable assessing of manufacturing process conditions and data necessary for determining of the optimal manufacturing technology for required part. The students will acquire basic experience for an individual orientation in problems of numerical simulations and analyzes using the finite element method.

Language of instruction


Number of ECTS credits


Mode of study

Not applicable.

Learning outcomes of the course unit

The students will acquire practical experience in the theory, as well as the latest knowledge in CAD-CAM-CAE. Students will obtain the basic skills and experience of projects elaborating in numerical simulations of metal forming, welding and heat treatment.


Basic knowledge of engineering technology and computer literacy.


Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Conditions for awarding the course-unit credit are active participation in the class and elaboration of fractional tasks. The course is finalized with the graded course-unit credit. It is classificated by using the ECTS grading scale.

Course curriculum

Not applicable.

Work placements

Not applicable.


The objective of the course is to acquire a view of possibilities of computer support utilisation in technology and to acquire bases of a working manner in particular areas of this subject. The students will have a view of what they can expect from computer support results in practice. They will learn to work with simulation software based on finite element method in area of computer aided forming, welding and heat treatment.

Specification of controlled education, way of implementation and compensation for absences

Attendance in lectures is recommended. Attendance in exercises is compulsory. The attendance to the seminar is regularly checked and the participation in the lesson is recorded. In case, that the lesson does not possible to participate, the teacher may in justified cases set an additional assignment.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ŘIHÁČEK, Jan. FSI VUT v Brně. Počítačová podpora technologie: část tváření. Brno, 2015, 29 s. Sylabus.
ŘIHÁČEK, Jan. FSI VUT v Brně. Simulace tvářecích procesů v softwaru FormFEM: řešené příklady. Brno, 2015, 94 s.
VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: část svařování. Brno, 2015. Sylabus.
VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: příklady ze simulací svařování a tepelného zpracování. Brno, 2015.

Recommended reading

VALBERG, Henry S. Applied metal forming including FEM analysis. New York: Cambridge University Press, 2010. ISBN 978-051-1729-430.
PETRUŽELKA, Jiří a Jiří HRUBÝ. Výpočetní metody ve tváření. 1. vyd. Ostrava: Vysoká škola báňská - Technická univerzita, Strojní fakulta, 2000. ISBN 80-7078-728-7.
GOLDAK, John A. a Mehdi AKHLAGHI. Computational welding mechanics. New York, USA: Springer, 2005, 321 s. ISBN 03-872-3287-7.
ESI GROUP. SYSWELD 2015: Reference Manual. 2015, 334 s.
RADHAKRISHNAN, P. a S. SUBRAMANYAM. CAD / CAM / CIM. 3rd ed. New Delhi: New Age International (P), 2008. ISBN 978-812-2422-368. (EN)


Classification of course in study plans

  • Programme B-STR-P Bachelor's

    specialization STG , 2. year of study, summer semester, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer


1. Computer analysis in the pre-production and production management
2. Simulation of technological processes
3. Fundamentals of FEM
4. Discretization
5. Nonlinearities in FEM analysis
6. Use of tensile test as a material model of numerical simulation
7. Description of anisotropy in sheet metal forming simulations

Welding and heat treatment:
8. Theoretical introduction to numeric simulation of welding,
9. Methods of welding problems solving
10. Thermal processes in welding and their mathematic modeling
11. Tension and deformation during welding, their numeric description
12. Material - a building of models for calculation
13. Numerical simulation of heat treatment

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer


1. Introduction to the basics of software based on FEM
2. The basic workflow of the forming analysis in FEM software
3. Solving of specified problem in PAM-Stamp software
4. Solving of specified problem in PAM-Stamp software
5. Assignment and solving of the project
6. Solving of the given project
7. Submission and evaluation of the given project

Welding and heat treatment:
8. Numerical simulation of steel welding - assignment 1
9. Numerical simulation of steel welding - assignment 2
10. Numerical simulation of steel welding - assignment 3
11. Numerical simulation of aluminum alloy welding
12. Numerical simulation of heat treatment
13. evaluation of written test, graded course-unit credit