Course detail
Computer Vision (in English)
FIT-POVaAcad. year: 2018/2019
Principles and methods of computer vision, methods and principles of image acquiring, preprocessing methods (statistical processing), filtering, pattern recognition, integral transformations - Fourier transform, image morphology, classification problems, automatic classification, D methods of computer vision, open problems of computer vision.
Language of instruction
Number of ECTS credits
Mode of study
Offered to foreign students
Learning outcomes of the course unit
The students will improve their teamwork skills, mathematics, and exploitation of the "C" language.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Hlaváč, V., Šonka, M.: Počítačové vidění, Grada, 1993, ISBN 80-85424-67-3 (EN)
Horn, B.K.P.: Robot Vision, McGraw-Hill, 1988, ISBN 0-07-030349-5
Russ, J.C.: The IMAGE PROCESSING Handbook, CRC Press, 1995, ISBN 0-8493-2532-3
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MBI , 0 year of study, winter semester, elective
- Programme IT-MGR-1H Master's
branch MGH , 0 year of study, winter semester, recommended course
- Programme IT-MSC-2 Master's
branch MSK , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, elective
branch MBS , 0 year of study, winter semester, elective
branch MPV , 0 year of study, winter semester, compulsory-optional
branch MIS , 2 year of study, winter semester, elective
branch MIN , 0 year of study, winter semester, compulsory-optional
branch MGM , 0 year of study, winter semester, compulsory-optional - Programme IT-MSC-2 Master's
branch MGMe , 0 year of study, winter semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Úvod, základy, motivace a aplikace/Introduction, motivation and applications (Hradiš 20.9. slajdy, slajdy, highlights)
- Základní principy klasifikace s učitelem - AdaBoost/Basic principles of machine learning with teacher - AdaBoost (Zemčík 27.9. slajdy-cz, slides-en)
- Shlukování, statistické metody/Clustering, statistical methods (Španěl 4.10. slajdy)
- Segmentace, analýza barev, analýza histogramu/Segmentation, colour analysis, histogram analysis (Španěl 11.10. slajdy1, slajdy2, slajdy3)
- Segmentace, analýza barev/Segmentation, Colour Analysis, ... finishing (Španěl), Object Detection - Trees (Juránek, 18.10. slajdy-en)
- Analýza a extrakce příznaků z textur/Analysis and Feature Extraction from Images (Čadík 25.10. slajdy)
- Hough transform, RHT, RANSAC, zpracování časových sekvencí/Time Sequence Processing (Hradiš, 1.11. slajdy1, slajdy2, slajdy2-en)
- Invariantní Oblasi Obrazu/Invariant Image Regions (Beran, 8.11. slajdy)
- Test, Konvoluční neuronové sítě a Tagování obrazu/Convolutional Neural Networks and Automatic Image Tagging (Hradiš, 15.11. slajdy )
- Konvoluční neuronové sítě a Tagování obrazu/Convolutional Neural Networks and Automatic Image Tagging II (Hradiš, 22.11. slajdy )
- Registrace obrazu (Čadík, 29.11., slajdy)
- 3D Vision/3D Vidění (6.12. Richter FEKT slajdy)
- Akcelerace zpracování obrazu, závěr (Zemčík, 13.12.)
POZOR!!! Témata přednášek i data jsou orientační a budou v průběhu semestru aktualizována.
NOTE: The topics and dates are just FYI, not guaranteed, and will be continuously updated.
Project
Teacher / Lecturer
Syllabus
- Homeworks (4-5 runs) at the beginning of semester
- Individually assigned project for the whole duration of the course.