Course detail
Signals and Systems
FEKT-BPC-SASAcad. year: 2018/2019
Introduction, motivation, types of signals. Continuous-time signals, Fourier transform, spectrum. Linear continuous-time systems, input-output description. Stability. Discrete time-signals, sampling. Discrete Fourier transform, spectrum. Linear discrete-time systems, input-output description. Stability of the discrete-time systems. Discretization of continuous-time systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- compute a freguency spectrum of continuos periodic and non- periodic signal
- demonstrate an input-output description of linear continuos system
- decide about stability of linear continuous system
- compute a freguency spectrum of discrete periodic and non- periodic signal
- demonstrate an input-output description of linear discrete system
- decide about stability of linear discrete system
- convert continuous system on discrete system
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
10 points for individual project
50 points for semestr written exam
20 points for semestr oral exam
Course curriculum
Fourier transform, frequency spectrum.
Linear, continuous-time systems, differential equation, Laplace transform.
Transfer function, zeros and poles, frequency response.
Frequency characteristics of the linear system.
Step response, impulse response.
Stability of the continuous-time systems.
Discrete-time signals, sampling of the continuous-time signal.
Discrete Fourier transform, the spectrum of the discrete time signal.
Discrete-time system, difference equation, Z transform.
Transfer function, zeros and poles, frequency response, frequency characteristics.
Step response, impulse response. Stability of the discrete systems. Discretization of continuous-time systems.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
- recommended prerequisite
Mathematics 2 - recommended prerequisite
Mathematics 1
Basic literature
Recommended reading
Classification of course in study plans
- Programme BPC-AMT Bachelor's 2 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Fourier transform, fequency spectrum. Examples.
Linear, continuous-time systems, differential equation, Laplace transform. Examples.
Transfer function, zeros and poles, frequency response. Examples.
Frequency characteristics of the linear system. Examples.
Step response, impulse response. Examples.
Stability of the continuous-time systems. Examples.
Discrete-time signals, sampling of the continuous-time signal. Examples.
Discete Fourier transform, the spectrum of the discrete-time signal. Examples.
Discrete-time system, difference equation, Z transform. Examples.
Transfer function, zeros and poles, frequency response, fequency characteristics. Examples.
Step response, impulse response, stability of the discrete-time systems. Examples.
Discretization of continuous-time systems. Examples.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Fourier transform, amplitude and phase spectrum.
Modeling of continuous-time linear systems.
Poles and zeros, frequency respons.
Frequency charakteristic of linear continuous-time system.
Step response, impulse response of linear continuous-time system.
Stability of linear continuous-time system.
Discrete-time signals, sampling.
Discrete Fourier transform, spectrum of discrete-time signal.
Modeling of discrete-time linear systems.
Frequency response, frequency charakteristic of discrete-time system.
Step response, impulse response of discrete-time system. Stability of discrete-time system.
Discretization of continous-time systems.