Course detail
HF Techniques and Antennas
FEKT-BVSTAcad. year: 2016/2017
The course is focused on clarification of basic principles in the area of high frequency circuits and antennas. In the introduction, high frequency properties of basic circuit elements are defined. The following part is oriented towards description and design of basic functional blocks of high frequency communication systems (amplifiers, mixers, modulators, demodulators, oscillators). The next part solves propagation of electromagnetic waves in the free space and along transmission lines, describes different principles and effects influencing propagation. The following part discusses energy radiation to space, describes basic types of antennas and their parameters. The last part is devoted to the introduction to microwave circuits.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- describe parameters of a capacitor and an inductor in the high frequency circuit
- explain a function of serial and parallel resonance circuits
- work with Smith diagram
- explain a function of individual high frequency blocks (amplifier, mixer, modulator, demodulator, oscillator)
- define parameters of a high frequency amplifier for low level signals
- design a linear high frequency amplifier according to given parameters
- estimate parameters of a high frequency power amplifier via calculations
- draw and describe basic schematics of feedback LC oscillators
- draw and describe principles of PLL synthesizers
- explain principles of electromagnetic waves propagation
- describe a function and parameters of a dipole antenna and to draw its radiation patterns
- define and calculate a gain of a given antenna
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. High frequency amplifiers
3. Design of a small-signal linear high frequency amplifier
4. Mixers
5. Modulators, demodulators
6. Signal generators – oscillators
7. Signal generators – synthesizers
8. Electromagnetic field theory
9. Electromagnetic waves propagation
10. Antennas
11. Antenna parameters
12. Transmission lines
13. Microwave circuits
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Active HF circuits. Design of linearized amplifier.
Non-linear HF circuits (modulators, demodulators, frequencz shifters).
Microwave circuits. Microstrip as basic building block. Substrates for manufacturing microstrip circuits.
Passive microstrip circuits. Transitions coaxial line - microstrip, waveguide - microstrip. Basic types of microstrip filters.
Active microwave circuits. Design of linearized amplifier.
Specifics of design and modeling in the area of antennas and microwave techniques. Basic laws used in design and modeling of microwave circuits and antennas.
Propagation of EM wave. Plane and spherical wave in homogeneous environment.
propagation of EM waves in non-homogeneous environment. Waves in real terrain.
Basic types of transmission lines (symetrical two-wire line, coaxial line, waveguides). Matching (shunts, impedance transformers).
Radiation of EM waves. Modeling and design of wire antennas.
Basic types of antennas (antennas for SW, VSW and microwave band). Supporting circuits (symetrization circuits, matching circuits).
Overview of commercial software for design and modeling of microwave circuits.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Modeling of microwave transmission lines (waveguides, microstrip lines).
Modeling and design of wire antennas.
Modeling and design of microstrip antennas.
Passive HF circuits: design of microstrip band-pass filter.
Active HF circuits: design of linearized amplifier.
Laboratory exercise
Teacher / Lecturer
Syllabus
Measuring parameters of coaxial cables.
Transformation properties of transmission lines.
Measuring parameters of antennas.
Measuring parameters of passive HF circuits.
Measuring parameters of active HF circuits.