Course detail
Electrical Engineering 2
FEKT-BEL2Acad. year: 2012/2013
Harmonic steady state. Methods of circuits analysis. RC, RL circuits, RLC resonant circuits. Multiphase systems. Power in three-phase systems. Analysis of three-phase systems in harmonic steady state. Classical and operator solution of transients in linear networks. Responses to standard and arbitrary test signals. Basic equations of transmission lines. Harmonic steady state and transient phenomena in transmission lines.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Qualification level in electrical engineering "competent worker".
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Symbolic method of linear circuit analysis in harmonic steady-state, power in harmonic steady state
3. Method of source substitution, current loops method, node voltages method
4. Properties of passive linear circuits of 1. order (RC, RL)
5. Properties of passive linear circuits of 2. order (RCL)
6. Three-phase circuits
7. Power in three-phase circuits
8. Transient processes in linear circuits of 1. and 2. order
9. Analysis of transient processes based on Laplace transform
10. Transient processes non-zero initial conditions, transient and impulse response of linear circuits
11. Transmission lines and its primary and secondary parameters
12. Harmonic steady state on transmission lines, waves, impedance, transient processes on transmission lines
13. Recapitulation, time reserve
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
SEDLÁČEK, J.; MURINA, M.; STEINBAUER, M.; KROUTILOVÁ, E. Elektrotechnika 2 - laboratorní a počítačová cvičení. BRNO, Ing. Zdeněk Novotný, CSc., Ondráčkova 105, 628 00 Brno. 2008. p. 1 - 160. ISBN 978-80-214-3575-9. (CS)
Recommended reading
Classification of course in study plans
- Programme EECC Bc. Bachelor's
branch B-AMT , 1 year of study, summer semester, compulsory
branch B-MET , 1 year of study, summer semester, compulsory
branch B-TLI , 1 year of study, summer semester, compulsory
branch B-SEE , 1 year of study, summer semester, compulsory
branch B-EST , 1 year of study, summer semester, compulsory - Programme EEKR-CZV lifelong learning
branch EE-FLE , 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Symbolic method for simulation of linear networks in harmonic steady state.
Properties of basic linear passive RC, RL networks.
Characteristics of resonance circuits LCR.
Three-phase systems.
Power in three-phase systems.
Transients in simple linear RC and RL networks.
Transients in 2nd-order networks.
Operator method for solution of transients in linear networks.
Step and impulse responses of a linear network.
Transmission lines, primary and secondary parameters.
Waves on transmission lines.
Harmonic steady state. Impedances, standing waves. Transient phenomena in transmission lines.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Analysis of linear circuits using phasors.
RC, RL and RLC resonant circuits.
Power in one and three-phase systems.
Transients in simple linear RC and RL networks.
Transients in 2nd-order networks.
Operator method for solution of transients in linear networks.
Step- and impulse responses of a linear network.
Transmission lines. Primary and secondary parameters.
Harmonic steady state. Impedances.
Examination to obtain qualification level "competent worker".
Laboratory exercise
Teacher / Lecturer
Syllabus
Analysis of linear circuits in harmonic steady state
Basic properties of RC two-port
Basic properties of CR two-port
Serial resonant circuit
Parallel resonant circuit
Power in one-phase systems
Phasor diagrams
Transients in simple linear RC and RL networks
Transmission line in harmonic steady state
Transmission line in transient state
Simulation of transmission line
Simulation of electrical circuits