Přístupnostní navigace
E-application
Search Search Close
Project detail
Duration: 1.1.2026 — 31.12.2028
Funding resources
Grantová agentura České republiky - Standardní projekty
On the project
Biomechanical models tied to experiments represent decisive tools in investigating processes in living organs, tissues and cells. Cellular mechanical properties represent an important indicator for distinguishing between healthy and cancer cells, which can be exploited not only in research but also in cancer diagnostics and possibly therapy. The experimental application of mechanical stimuli for estimating these properties can be advantageously complemented by computational models to evaluate non-measurable quantities; especially due to the capability of structurebased Finite Element models to analyze the role of individual components in the cell mechanical responses. Their comprehensive validation is ensured by tailored experiments. Herein, the existing structure-based bendotensegrity Finite Element model will be enhanced to capture realistic cell geometry and structure, cellular adhesion and changes in actin fiber prestress. These features are deemed essential in the observed variances in mechanical properties between healthy and cancer cells and important in cancer metastasis.
Keywords Mechanical testing;finite element model;computational simulation;cancer cell;cytoskeleton modulation;
Mark
26-20714S
Default language
English
People responsible
Burša Jiří, prof. Ing., Ph.D. - principal person responsible
Units
Institute of Solid Mechanics, Mechatronics and Biomechanics- responsible department (28.3.2025 - not assigned)Institute of Solid Mechanics, Mechatronics and Biomechanics- beneficiary (28.3.2025 - not assigned)
Responsibility: Burša Jiří, prof. Ing., Ph.D.