study programme

Structural and Transport Engineering

Faculty: FCEAbbreviation: DPA-KAcad. year: 2023/2024

Type of study programme: Doctoral

Study programme code: P0732D260023

Degree awarded: Ph.D.

Language of instruction: English

Tuition Fees: 4000 EUR/academic year for EU students, 4000 EUR/academic year for non-EU students

Accreditation: 8.10.2019 - 8.10.2029

Mode of study

Full-time study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Civil Engineering Building Construction 70
Civil Engineering Transportation Construction 30

Study aims

The aim of the doctoral study program Structures and Traffic Structures is to provide excellent graduates with a specialized university degree and scientific training in selected current fields of study, particularly in the field of mechanics of load-bearing building structures, concrete, masonry, composite, metal, wood, geotechnics, building testing and diagnostics of load-bearing building structures as well as in the areas of road construction and railway structures and constructions. The study is focused on complex scientific preparation, methodology of independent scientific work and on the development of knowledge in the field of the theory of load-bearing structures, engineering structures and transport structures, with the basic disciplines presented areas of mechanics of load-bearing structures of engineering and transport structures. . The scientific preparation in this study program is based on mastering the initial theoretical disciplines of the science-based basis and theoretical and scientific disciplines of the relevant focus.
The aim of the study is also the involvement of students in the preparation and solution of national and international scientific research projects, presentation of achieved results at national and international level and their publication in professional and scientific foreign and domestic journals as well as at scientific and professional conferences. During his / her studies, the student gains not only new theoretical knowledge, but also own experience from experimental activities and necessary practical knowledge also thanks to close cooperation with construction practice in the field of designing and designing and realization of load-bearing building structures as well as to a foreign university or research institution, or work placements at another professional workplace.

Graduate profile

Graduates of the doctoral study program Structural and Transport Engineering will be prepared for creative activities in the field of science, research, development and innovation, both individually and in teams at national and international level. During his / her doctoral program he / she acquires and acquires deep knowledge of theoretical and professional disciplines, acquires not only new theoretical knowledge but also new own experience and acquires the necessary habits for independent scientific research and creative activities in research and development. in addressing current scientific issues and issues arising from practice requirements. Upon successful completion of the highest level of university studies in the doctoral study program Construction and Traffic Structures, the graduate will be able to deepen the knowledge and level of knowledge in the field and successfully use knowledge and scientific approaches in solving theoretical and practical tasks.
Scientific preparation is focused on the following basic specializations: Mechanics of load-bearing structures; Concrete and masonry structures; Metal, wood and composite structures; Geotechnics; Experimental technology and testing; Roads; Railway structures and constructions. Graduates can be employed mainly in research and development workplaces, in designing organizations, in state administration bodies, and the experience gained during their teaching experience within the doctoral study program can be applied also in education in the academic sphere or in other educational or research institutions. Completion of the doctoral study program is also a necessary precondition for possible further career and professional academic growth of the graduate.

Profession characteristics

Doctoral degree programs are primarily aimed at graduate employment in science and research, which is, among other things, anchored in the objectives of study, learning outcomes and graduate profile. This implies the employment of graduates especially in organizations, institutions and companies that are engaged in research and development activities. These are mainly research organizations whose main activity is research and development, but also construction practice entities, ie companies, where research and development is one of the part of the whole spectrum of activities in addition to commonly realized activities such as production and implementation. A number of implementing companies are currently creating support for their own research and development as they can strengthen their position, competitiveness and marketability in a highly competitive environment. In this regard, there is a growing demand for younger generation professionals with independent creative scientific work, knowledge and insight into new modern trends not only in their expertise but also in related expertise and activities such as PC modeling, simulation, experimental methods and procedures. Last but not least, the graduate has the opportunity to work in the academic sphere, which involves combining scientific research and educational activities. Graduates can thus find employment especially in research organizations and construction practice companies in the context of related development and innovation activities, in educational institutions, especially in the university sphere, which provides them with the possibility of further personal and career development and professional academic growth. Moreover, experience shows that graduates of doctoral study programs are very successful in organizations of the mentioned types not only in the Czech Republic but also abroad, which is also true for graduates in the field of Construction and Transport Structures. Completion of the doctoral study program gives graduates very good prerequisites for employment in, for example, design organizations or state administration in higher professional and managerial positions.

Fulfilment criteria

Fulfillment of the subjects of the individual study plan, successful completion of the state doctoral examination, foreign experience, relevant creative activity and successful defense of the dissertation.

Study plan creation

The rules and conditions for the creation of study plans of study programs carried out at the Faculty of Civil Engineering of the BUT define:
Rules of BUT study programs (www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty), which according to Article 1, paragraph 1, point:
c) defines the processes of creation, approval and changes of study program proposals before their submission for accreditation to the National Accreditation Office for Higher Education,
d) lays down the formal requirements for study programs and courses,
e) defines the obligations of study program and subject guarantors,
f) defines the standards of study programs at BUT,
g) defines the principles of quality assurance of study programs.
Study and Examination Regulations of the Brno University of Technology (www.vutbr.cz/uredni-deska/international-details-and-documents)
Details of the conditions for study at the Faculty of Civil Engineering of the BUT are governed by the Dean's Directive )
The PhD student studies according to an individual study plan, which is elaborated by the supervisor in cooperation with the PhD student. The individual study plan is binding for the doctoral student. It specifies all duties set in accordance with the BUT Study and Examination Regulations that a doctoral student must fulfill in order to successfully complete his / her studies.
During the first three semesters, the doctoral student consists of compulsory, compulsorily elective or at the same time, it is intensively engaged in its own study and analysis of knowledge in the field determined by the topic of the dissertation and continuous publication of the knowledge and results obtained in this way. In the following semesters, the doctoral student focuses more on research and development related to the topic of the dissertation, on the publication of the results of his / her creative work and on his / her own dissertation. By the end of the fifth semester, the doctoral student has passed the state doctoral examination. The doctoral student is also involved in pedagogical activities, which is a part of his scientific preparation.
The individual study plan includes scientific outputs in individual years:
- regular publishing activity (Juniorstav and similar),
- participation in scientific conferences at home and abroad,
- for defense of DZP it is necessary to publish - min. 2x Scopus or 1x WOS with impact factor.

Availability for the disabled

At the Faculty of Civil Engineering, BUT, barrier-free access to all teaching rooms is currently provided. However, students must be physically fit to be qualified as a civil engineer. In practically oriented laboratory teaching, they must be able to operate measuring instruments and similar laboratory equipment independently without endangering themselves or their surroundings.
BUT provides support to students with specific needs, for details see Guideline 11/2017 (www.vutbr.cz/uredni-deska/international-documents-and-documents/-d141841/uplne-zneni-smernice-c-11- 2017-p147550).
In order to promote equal access to higher education, BUT incorporates the Alfons Advisory Center, part of the BUT Institute of Lifelong Learning, to provide guidance and support services to applicants and students with specific educational needs. Specific educational needs include learning disabilities, physical and sensory disabilities, chronic somatic illness, autistic spectrum disorders, impaired communication skills and mental illness (alfons.vutbr.cz/o-nas).
Students are provided with information concerning the accessibility of study programs with respect to the specific needs of the applicant, information about the architectural accessibility of individual faculties and university parts, about accommodation at the BUT dormitory, about the possibilities of adapting the admission procedure and adapting the study itself. Other services of the Center for Students with Special Educational Needs also include interpreting and rewriting services, or assistance services - guiding, spatial orientation, in order to enable these students to demonstrate their skills and knowledge in the same way as other students. This is done through the so-called adaptation of study, ie by appropriate adjustment of the study regime, which cannot be understood as a simplification of the content of study or relief of study obligations.

What degree programme types may have preceded

The doctoral study program Construction and Traffic Structures is a follow-up to the follow-up Master's study program Civil Engineering, in particular the study field Construction and Traffic Structures, respectively. as well as other fields of study and nursing master's degree programs. After accreditation of the follow-up master's study program Civil Engineering - Structures and Traffic Constructions for this program.

Issued topics of Doctoral Study Program

2. round (applications submitted from 20.10.2023 to 15.12.2023)

  1. Application of artificial intelligence methods for solving civil engineering problems

    The topic is focused on the application of artificial intelligence methods such as artificial neural networks, genetic algorithms, etc. for solving problems in the field of design and assessment of structures, such as optimization of materials and structures, damage detection, reliability of structures, etc.

    Tutor: Lehký David, prof. Ing., Ph.D.

  2. Fatigue life assessment of modern concrete

    Current assessment of fatigue life of concrete structure uses reduction of applied stress in each member below certain limit. This approach does not consider degradation of mechanical properties caused by cyclic loading and its progressive micro-cracking.

    Tutor: Seitl Stanislav, doc. Ing., Ph.D.

  3. Homogenization of discrete multi-physical models of concrete with help of machine learning

    Topic of the Ph.D. track will cover development of discrete mesoscale models of concrete mechanical and coupled multi-physical behavior. These high-fidelity models will be homogenized to be used at continuous homogeneous scale solved by the finite element method. The machine learning will be employed to replace expensive computations of the mesoscale substructure.

    Tutor: Eliáš Jan, prof. Ing., Ph.D.

  4. Simulation of concrete 3D printing at mesoscale

    Student will develop numerical models for 3D printed concrete at different scales - from micro to macro. Mathematical homogenization will be employed to transfer information from the lower to the upper scale.

    Tutor: Eliáš Jan, prof. Ing., Ph.D.

  5. Simulation of concrete 3D printing at mesoscale

    Student will develop numerical models for 3D printed concrete at different scales - from micro to macro. Mathematical homogenization will be employed to transfer information from the lower to the upper scale.

    Tutor: Eliáš Jan, prof. Ing., Ph.D.

  6. Stability and strength of stainless steel structural members in natural environmental conditions

    Stainless steel is a new type of building material that lacks long-term observations of structural degradation. Testing of stainless steel materials under different environmental conditions (temperatures) is key to reliable predictions of the behaviour of structural elements, such as bridges, in real operating conditions. With the advanced integrated computational-experimental research program, we aim to build on our experience in modelling stainless steel structures and contribute to a better and deeper understanding of the reliability of stainless steel structures

    Tutor: Seitl Stanislav, doc. Ing., Ph.D.

  7. Virtual element method applied to mechanics and heat conduction

    Student will focus on developement and applications of virtual element method. The method allows to use polygonal or polyhedral finite elements with arbitrary shape and number of nodes. The study will start with elastic behavior and later continue with inelastic material response. This topic is offered in collaboration with Institute of mathematics, we expect advanced mathematical knowledge of the applicants.

    Tutor: Eliáš Jan, prof. Ing., Ph.D.

1. round (applications submitted from 04.04.2023 to 31.07.2023)

  1. Application of artificial intelligence methods for solving civil engineering problems

    The topic is focused on the application of artificial intelligence methods such as artificial neural networks, genetic algorithms, etc. for solving problems in the field of design and assessment of structures, such as optimization of materials and structures, damage detection, reliability of structures, etc.

    Tutor: Lehký David, prof. Ing., Ph.D.

  2. Design of steel joints using advanced numerical modelling

    The topic is focused on numerical modelling of basic structural details of load-bearing structures, especially of joints. The standardisation of the calculation of structural details using FEM will be included in the currently forthcoming standard EN 1993-1-14 Eurocode 3 - Design of steel structures - Part 1-14: Design assisted by finite element analysis. Stress concentrations realistically occur in the connections of steel structures and the elastic FEA calculation leads to a very conservative design compared to traditional standard procedures. In the design numerical model, the elastic-plastic behaviour of the material is usually adopted and the assessment of the individual parts of the details is limited by a limiting plastic strain of 5% for all types of structures. The aim of the dissertation is to analyse in detail the influence and safety of the limiting plastic strain for shell numerical models of a selected type of steel joints (e.g. thin-walled members or high-strength steel members) and to recommend parameters for numerical design models.

    Tutor: Vild Martin, Ing., Ph.D.

  3. Efficient probabilistic design of concrete structures based on safety formats and response surface methods

    The topic is focused on probabilistic and semi-probabilistic approaches for design of concrete structures using nonlinear computational methods based on finite element method. It includes also development and application of response surface methods and sensitivity analysis methods.

    Tutor: Novák Drahomír, prof. Ing., DrSc.

  4. Homogenization of discrete multi-physical models of concrete with help of machine learning

    Topic of the Ph.D. track will cover development of discrete mesoscale models of concrete mechanical and coupled multi-physical behavior. These high-fidelity models will be homogenized to be used at continuous homogeneous scale solved by the finite element method. The machine learning will be employed to replace expensive computations of the mesoscale substructure.

    Tutor: Eliáš Jan, prof. Ing., Ph.D.

  5. Stochastic nonlinear analysis, damage identification and cracking

    The topic is focused on probabilistic approaches for assessment of concrete structures using nonlinear computational methods based on finite element method. It includes also development and application of identification methods based on cracking and data-driven approaches.

    Tutor: Novák Drahomír, prof. Ing., DrSc.

  6. The autonomous diagnosis of transport structures including related processes

    The topic includes the development and application of new procedures in the field of data collection on transport structures and buildings, including their transport characteristics. The topic is focused on different modes of transport, road, rail, air, water, special or more modes at the same time. Orientation to transport relations, to the capacity and occupancy of specific transport routes, to the speed of transport or speed of travel or delay, to the occupancy of means of transport or to parking and parking of means of transport, or to tariff policy and other motivating factors is assumed. The topic assumes an orientation both on the methods of automatic data collection using detectors and on the use of advanced methods of mathematical analysis, including methods of machine learning and artificial intelligence.

    Tutor: Smutný Jaroslav, prof. Ing., Dr.

Course structure diagram with ECTS credits

1. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA036Doctoral Seminar 1 (KDS)cs4CompulsoryCrS - 39yes
DYA004English Language Tutorial for PhD Studentscs1CompulsoryCrC1 - 26yes
DIB023Diagnostic methods in civil engineeringcs8Compulsory-optionalExP - 395984yes
DFB022Soil and Structure Interactioncs8Compulsory-optionalExP - 395984yes
DMB019Reliability of Road Structurescs8Compulsory-optionalExP - 395984yes
DLB040Theory of Concrete and Masonry Structurescs8Compulsory-optionalExP - 395984yes
DNB018Permanent Way Theorycs8Compulsory-optionalExP - 395984yes
DOB037Theory of Metal and Timber Structurescs8Compulsory-optionalExP - 395984yes
DDB034Theory of elasticity, plasticity and failurecs8Compulsory-optionalExP - 395984yes
DDB033Structural mechanicscs8Compulsory-optionalExP - 395985yes
DMB020Traffic Structures Theorycs8Compulsory-optionalExP - 395985yes
DAB029Discrete Methods in Civil Engineering 1cs4Compulsory-optionalCrP - 395986yes
DAB030Numerical methods 1cs4Compulsory-optionalCrP - 395986yes
DAB031Probability and mathematical statisticscs4Compulsory-optionalCrP - 395986yes
2. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA038Doctoral Seminar 2 (KDS)cs8CompulsoryCrS - 78yes
DAB032Time series analysiscs10Compulsory-optionalExP - 395989yes
DAB033Applications of mathematical methods in economicscs10Compulsory-optionalExP - 395989yes
DAB034Discrete Methods in Civil Engineering 2cs10Compulsory-optionalExP - 395989yes
DAB035Numerical methods 2cs10Compulsory-optionalExP - 395989yes
DAB036Numerical methods for the variational problemscs10Compulsory-optionalExP - 395989yes
DAB037Models of regressioncs10Compulsory-optionalExP - 395989yes
DLB041Modelling of Structurescs8Compulsory-optionalExP - 395990yes
DFB023Underground Engineeringcs8Compulsory-optionalExP - 395990yes
DIB024Radiation methods in civil engineeringcs8Compulsory-optionalExP - 395990yes
DDB035Dynamics of structurescs8Compulsory-optionalExP - 395990yes
DNB019Railway Substructure Theorycs8Compulsory-optionalExP - 395990yes
DOB039Theory of Composite Steel-Concrete Structurescs8Compulsory-optionalExP - 395990yes
DMB021Environment and road designcs8Compulsory-optionalExP - 395990yes
2. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DYA005English for PhD studentscs8CompulsoryExyes
DOA040Doctoral Seminar 3 (KDS)cs8CompulsoryCrS - 78yes
3. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA041Doctoral Seminar 4 (KDS)cs8CompulsoryCrS - 78yes
3. year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA042Doctoral Seminar 5 (KDS)cs14CompulsoryCrS - 78yes
4. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA043Doctoral Seminar 6 (KDS)cs14CompulsoryCrS - 78yes
4. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DOA044Doctoral Seminar 7 (KDS)cs20CompulsoryCrS - 78yes
All the groups of optional courses
Gr. Number of courses Courses
5984 1 DIB023, DFB022, DMB019, DLB040, DNB018, DOB037, DDB034
5985 1 DDB033, DMB020
5986 1 DAB029, DAB030, DAB031
5989 1 DAB032, DAB033, DAB034, DAB035, DAB036, DAB037
5990 1 DLB041, DFB023, DIB024, DDB035, DNB019, DOB039, DMB021