Branch Details

Teleinformatics

FEKTAbbreviation: PPA-TLIAcad. year: 2013/2014

Programme: Electrical Engineering and Communication

Length of Study: 4 years

Profile

The aim of the studies is to prepare top-class scientific personalities that will be able to provide solution to challenging problems of science and technology in the field of information technologies in telecommunications. Another aim is to teach graduates the methods of scientific work, to make their knowledge of higher mathematics and physics more profound, and to furnish students with theoretical, experimental and practical knowledge from the field of teleinformatics.

Key learning outcomes

Graduates of doctoral studies in the field of teleinformatics are fit to work as scientific and research workers in the development, design and operation departments of research and development institutes, and telecommunications companies, where they can make full creative use of their knowledge and skills.
The graduate is capable of solving independently sophisticated problems of science and technology in the field of teleinformatics.
In view of the scope of his theoretical education the graduate is capable of adapting to practice requirements in both fundamental and applied research.

Occupational profiles of graduates with examples

This field of study focuses on the science education of doctoral students with profound theoretical foundations in converging communication and in formation technologies. The main part of the study includes course in theoretical informatics and telecommunication technology. In the area of teleinformatics the student has much knowledge of communication and information technologies, data transmissions and their security, inclusive of using and designing the related software. He is well versed in operating systems, computer languages, database systems, distributed applications and the like. He can cope with the algorithmization of tasks on a high level and can propose new technological solutions of telecommunication devices, information systems and support services.

Guarantor

Issued topics of Doctoral Study Program

  1. Communication latency in IP networks

    The research will deal with an analysis of the influence of networking devices and transmission paths on the communication latency in IP networks. The goal will be a proposal of possible methods for the communication latency prediction without a direct communication between IP stations. Latency prediction is mainly used in distributed networking applications. An experimental large-scale network PlanetLab (www.planet-lab.org) will be used for the research.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  2. Converters for mutual A/D and D/A conversions working in the current mode

    The work is focused on the design of A/D and D/A converters working in the current mode. The aim is to design a suitable structure of number-current and current-number converters without internal current-voltage and voltage-current conversions with respect to enhancing the bandwidth in comparison with converters working in the voltage mode. Part of the work is also the design and analysis of current-mode antialiasing filters. The design will start from unconventional circuit element structures such as current conveyors (CCI, CCII, CCIII) with simple or floating output, current feedback amplifiers (CFA) or transconductance amplifiers (OTA, BOTA, DBTA). Requirements to be met by the candidate: the knowledge of circuit theory and simulation programs (MicroCap, PSpice).

    Tutor: Lattenberg Ivo, doc. Ing., Ph.D.

  3. Design of Modern IP Sophisticated Telematic Systems in Transport

    Telematic systems are particularly common in transport. Research into telematic systems based on the Internet protocol will be focused on the design of sophisticated, i.e. well-considered, formally well-developed and complicated methods that use IP systems in various areas. Surveillance and protection systems, systems of paying the fare, information systems and interactive applications, etc. are supposed in particular. Localization by GPS, vehicle diagnostics, and vehicle monitoring on ortho-maps in real situations are in the focus. Sophisticated telematic systems will be software simulated, optimized and subsequently hardware realized in the form of functional specimens.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  4. Effective Use of IP Networks in Crisis Situations

    The aim is to create an effective strategy for the use of the public and private IP network for crisis management. Also propose such a network, which could have the capacity, but also in terms of resistance to ensure the crisis communication. This would, in particular, traffic data, voice, TV broadcast. Other parts would propose new methods of Internet communication management-manage the flows of information, etc. Research should include also the influence of network topology on its stability and security, the speed of the spread of viruses, ability to resist attacks, etc. One of the objectives is to design a software robot that will be able to monitor the network topology, where appropriate, the Internet, the aim is to design a system for exchanging files over the Internet, but without any central control. The system would be intuitively usable. The solution should be safe and allow anonymous of the sender and the recipient of the data. The final. design of highly durable network suitable for crisis situations and this proposal prove theory.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  5. Emergency Communication in IP Networks

    Communication techniques providing emergency calls have to locate the caller in cases when they are not allowed or able to provide it themselves. The current issue of the communication techniques based on the IP protocol is that the location of the caller is not estimated with the required accuracy. A possible solution to locate an IP node is to use the methods based on a measurement of the communication parameters. An experimental large-scale network PlanetLab (www.planet-lab.org) will be used for the research.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  6. Feature analysis of current-mode electronic frequency filters

    The work is focused on the feature analysis of current-mode electronic frequency filters. The aim is to design algoritmizable methods that lead to finding features of filters generally defined by the schematic. It will be necessary to evaluate the available feature ranges, e.g. quality, pass-band current transfer, dynamic range within a defined supply voltage, sensitivity, etc. In the case of finding the quality range, the point is to find the extremes of a multi-variable non-linear function. Mathematical tools (e.g. Maple or MathCAD) will first be used for this purpose; afterwards the algorithm itself will be designed. Requirements to be met by the candidate: algorithm thinking, the knowledge of computer programming and circuit theory.

    Tutor: Lattenberg Ivo, doc. Ing., Ph.D.

  7. Feature analysis of current-mode electronic frequency filters

    The work is focused on the feature analysis of current-mode electronic frequency filters. The aim is to design algoritmizable methods that lead to finding features of filters generally defined by the schematic. It will be necessary to evaluate the available feature ranges, e.g. quality, pass-band current transfer, dynamic range within a defined supply voltage, sensitivity, etc. In the case of finding the quality range, the point is to find the extremes of a multi-variable non-linear function. Mathematical tools (e.g. Maple or MathCAD) will first be used for this purpose; afterwards the algorithm itself will be designed. Requirements to be met by the candidate: algorithm thinking, the knowledge of computer programming and circuit theory.

    Tutor: Lattenberg Ivo, doc. Ing., Ph.D.

  8. More Effective security of networks with IEEE 802.11 Standard

    The vulnerability of the IEEE 802.11, attacks on the security methods and the methods for its effectiveness. Wireless network security issues expected standards IEEE 802.11. A detailed introduction to these standards, describe the various types of wireless security, including their properties and the subsequent theoretical analysis. The implementation of the attacks on the various methods of modern security algorithms, emphasis will be placed on the identification of weaknesses of 802.11 protocols. On the basis of the findings will be designed and tested security more effective. Attention will be paid to the security quality of service QoS in 802.11 networks. The network will be subject to examination by appropriate programs and simulators (Opnet Modeler, NS2). Will also be examined according to modern services (IP phones, the transmission of video, voice, multimedia) to delay and to be performed, including an overall analysis to the QoS optimization.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  9. Novel methods of biological signals extraction from medical images

    The theme is focused on processing of static, dynamic or three-dimensional images produced by different medical acquisition techniques, namely the output of the sonographic examination, body slices acquisition using the magnetic resonance etc. The goal is to improve properties of single images, their segmentation, 2D object recognition, quantification of different object parameters, their dynamic or spatial analysis, or eventual 3D model reconstruction. The main result of the work will be a proposal of a novel method being utilizable for solving of concrete diagnostic problems in cooperation with doctors.

    Tutor: Říha Kamil, doc. Ing., Ph.D.

  10. Optimization of Routing Principles in High-speed Converged Networks

    The aim of the study is to optimize the routing principles. The architecture of network element with priority routing will be designed. An original procedure will be proposed for modelling this problematic mathematically and also for implementing the mathematical model. The software simulation of a system that can be used to control the switching field designed for switching data units shall be extended with hardware implementation, e.g. via programmable logic fields of development system FPGA. The knowledge obtained will be generalized and related to the theory of high-speed network elements. The MATLAB program and Simulink and the VHDL and Visual C++ language in particular are expected to be used in software simulation.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  11. Routing in IP networks

    Routing policies in IP networks negatively influence the communication parameters. The research will deal with a study of the IP routing influence on the communication latency and other communication parameters. The goal will be a proposal of possible methods for the minimization of such negative influences. An experimental large-scale network PlanetLab (www.planet-lab.org) will be used for the research.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  12. Utilization of sparse signal representations for their processing

    This recent area of research is based on the assumption that the observed signal is sparse with respect to a basis (i.e. it has only several non-zero coefficients). This assumption is usually met in the case of real images, but also locally in audio, so sparsity-based modern methods (compressed sensing, inpainting, denoising, deblurring and others) are advantageously used.

    Tutor: Rajmic Pavel, prof. Mgr., Ph.D.


Course structure diagram with ECTS credits

1. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DBM1AAdvanced methods of processing and analysis of signals and imagesen4Optional specializedDrExS - 39yes
DTK2AApplied cryptographyen4Optional specializedDrExS - 39yes
DET1AElectrotechnical materials, material systems and production processesen4Optional specializedDrExS - 39yes
DFY1AJunctions and nanostructuresen4Optional specializedDrExS - 39yes
DEE1AMathematical Modelling of Electrical Power Systemsen4Optional specializedDrExS - 39yes
DME1AMicroelectronic Systemsen4Optional specializedDrExS - 39yes
DRE1AModern electronic circuit designen4Optional specializedDrExS - 39yes
DAM1ASelected chaps from automatic controlen4Optional specializedDrExS - 39yes
DVE1ASelected problems from power electronics and electrical drivesen4Optional specializedDrExS - 39yes
DTE1ASpecial Measuring Methodsen4Optional specializedDrExS - 39yes
DJA6AEnglish for post-graduatescs4General knowledgeDrExCj - 26yes
DMA1AStatistics, Stochastic Processes, Operations Researchen4General knowledgeDrExS - 39yes
1. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DME2AMicroelectronic technologiesen4Optional specializedDrExS - 39yes
DRE2AModern digital wireless communicationen4Optional specializedDrExS - 39yes
DTK1AModern network technologiesen4Optional specializedDrExS - 39yes
DTE2ANumerical Computations with Partial Differential Equationsen4Optional specializedDrExS - 39yes
DET2ASelected diagnostic methods, reliability and qualityen4Optional specializedDrExS - 39yes
DAM2ASelected chaps from measuring techniquesen4Optional specializedDrExS - 39yes
DBM2ASelected problems of biomedical engineeringen4Optional specializedDrExS - 39yes
DEE2ASelected problems of electricity productionen4Optional specializedDrExS - 39yes
DFY2ASpectroscopic methods for non-destructive diagnostics en4Optional specializedDrExS - 39yes
DVE2ATopical Issues of Electrical Machines and Apparatusen4Optional specializedDrExS - 39yes
DMA2ADiscrete Processes in Electrical Engineeringen4General knowledgeDrExS - 39yes
1. year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DQJAAEnglish for the state doctoral examcs4CompulsoryDrExyes