Branch Details
Power Electrical and Electronic Engineering
FEKTAbbreviation: PK-SEEAcad. year: 2010/2011
Programme: Electrical Engineering and Communication
Length of Study: 4 years
Profile
The goal of the postgradual doctoral (PhD) study is the education for scientific work in the area of power electrical engineering and power systems. Graduates of PhD find occupation either as scientific or research workers including industrial development, either as universty teachers and in higher manager functions as well
Key learning outcomes
Occupational profiles of graduates with examples
The graduate obtains broad knowledge of subject of high power engineering. The knowledge is build mainly on theoretical background of the subject. Moreover the graduate will obtain deep special knowledge aimed in direction of his/her thesis. The graduate will be able to perform scientific and/or applied research based on up to date theoretical knowledge. The graduate will be able to organize and lead a team of researchers in the studied subject.
Guarantor
Issued topics of Doctoral Study Program
- Dispersed power production and its influence on reliability of supply
Thesis is focused on the possibilities of connecting small power sources to the supply network and evaluation of its influence on the reliability of eletrical power supply regarding its flukiness. The thesis results in the design of system precautions and conditions for the operation of small power sources in supply network.
- Modeling of the dispersed power generation influence on the grid power quality
Power generation using renewable power sources and preferably at point of demand is certainly way to satisfaction of ever-increasing need for the environmental protection. Nevertheless, operation of such power generation units leads to physical-technical-economical problems like hardly specifiable power supply reliability, huge time irregularity of the power supply for example under varying climatic conditions, generation of distorted voltages, etc. Thesis is focused on modeling and simulation of the following type power units: combustion engine-induction generator, wind turbine-induction generator, Photovoltaic generator-power inverter, etc. The simulation should be performed for their connection to a representative low and middle voltage power grid, with evaluation of their influence on the voltage characteristic for each power grid node. Cumulative effect of the distributed power units over the power grid is significant as well.
Course structure diagram with ECTS credits
Abbreviation | Title | L. | Cr. | Com. | Compl. | Hr. range | Gr. | Op. |
---|---|---|---|---|---|---|---|---|
DET1 | Electrotechnical materials, material systems and production processes | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DEE1 | Mathematical Modelling of Electrical Power Systems | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DME1 | Microelectronic Systems | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DTK1 | Modern network technologies | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DRE1 | Modern electronic circuit design | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DFY1 | Junctions and nanostructures | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DTE1 | Special Measuring Methods | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DAM1 | Selected chaps from automatic control | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DVE1 | Selected problems from power electronics and electrical drives | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DBM1 | Advanced methods of processing and analysis of signals and images | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DMA1 | Statistics, Stochastic Processes, Operations Research | cs | 4 | General knowledge | DrEx | S - 39 | yes |
Abbreviation | Title | L. | Cr. | Com. | Compl. | Hr. range | Gr. | Op. |
---|---|---|---|---|---|---|---|---|
DTK2 | Applied cryptography | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DME2 | Microelectronic technologies | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DRE2 | Modern digital wireless communication | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DTE2 | Numerical Computations with Partial Differential Equations | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DFY2 | Spectroscopic methods for non-destructive diagnostics | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DET2 | Selected diagnostic methods, reliability and quality | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DAM2 | Selected chaps from measuring techniques | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DBM2 | Selected problems of biomedical engineering | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DEE2 | Selected problems of electricity production | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DVE2 | Topical Issues of Electrical Machines and Apparatus | cs | 4 | Optional specialized | DrEx | S - 39 | yes | |
DMA2 | Discrete Processes in Electrical Engineering | cs | 4 | General knowledge | DrEx | S - 39 | yes |
Abbreviation | Title | L. | Cr. | Com. | Compl. | Hr. range | Gr. | Op. |
---|---|---|---|---|---|---|---|---|
DQJA | English for the state doctoral exam | cs | 4 | Compulsory | DrEx | yes | ||
DJA6 | English for post-graduates | cs | 4 | General knowledge | DrEx | Cj - 26 | yes |