Přístupnostní navigace
E-application
Search Search Close
Doctoral Thesis
Author of thesis: Mgr. et Mgr. Jan Šafařík, Ph.D.
Acad. year: 2017/2018
Supervisor: prof. RNDr. Josef Diblík, DrSc.
Reviewers: prof. Denys Khusainov, DrSc., prof. RNDr. Miroslava Růžičková, CSc.
The present thesis deals with the construction of a general solution of weakly delayed systems of linear discrete equations in ${\mathbb R}^3$ of the form \begin{equation*} x(k+1)=Ax(k)+Bx(k-m) \end{equation*} where $m>0$ is a positive integer, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ and $B=(b_{ij})$ are constant $3\times 3$ matrices. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. The criteria ensuring that a system is weakly delayed are developed and then specified for every possible case of the Jordan form of matrix $A$. The system is solved by transforming it into a higher-dimensional system but without delays \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} where ${\mathrm{dim}}\ y = 3(m+1)$. Using methods of linear algebra, it is possible to find the Jordan forms of $\mathcal{A}$ depending on the eigenvalues of matrices $A$ and $B$. Therefore, general the solution of the new system can be found and, consequently, the general solution of the initial system deduced.
discrete equation, linear systems of difference equations, weakly delayed system, Cayley-Hamilton theorem, Laplace theorem, Jordan form
Date of defence
15.06.2018
Result of the defence
Defended (thesis was successfully defended)
Process of defence
V práci byla vytvořena teorie pro nalezení analytického řešení systémů slabě zpožděných lineárních diskrétních rovnic v R^3. Výsledky jsou nové a zobecňují předchozí výsledky pro systémy v R^2. Hlavní výsledky už byly publikovány.
Language of thesis
English
Faculty
Fakulta elektrotechniky a komunikačních technologií
Department
Department of Mathematics
Study programme
Electrical Engineering and Communication (EKT-PP)
Field of study
Mathematics in Electrical Engineering (PP-MVE)
Composition of Committee
prof. RNDr. Jan Chvalina, DrSc. (předseda) prof. Ing. Pavel Jura, CSc. (člen) prof. RNDr. Miroslava Růžičková, CSc. - oponent (člen) prof. Denys Khusainov, DrSc. - oponent (člen) doc. RNDr. Jaromír Baštinec, CSc. (člen) doc. RNDr. Jaroslav Beránek, CSc. (člen) doc. RNDr. Jiří Moučka, CSc. (člen)
Supervisor’s reportprof. RNDr. Josef Diblík, DrSc.
Reviewer’s reportprof. Denys Khusainov, DrSc.
Reviewer’s reportprof. RNDr. Miroslava Růžičková, CSc.
Responsibility: Mgr. et Mgr. Hana Odstrčilová