Přístupnostní navigace
E-application
Search Search Close
Master's Thesis
Author of thesis: Ing. Michal Bahník
Acad. year: 2014/2015
Supervisor: prof. RNDr. Jan Franců, CSc.
Reviewer: doc. RNDr. Edita Kolářová, Ph.D.
This thesis deals with the issue of stochastic ordinary differential equations. After the summary of the theory of stochastic processes, namely the Brownian motion, the stochastic Itô's integral, differential and so called Itô's formula are introduced. Thereafter the solution of the initial value problem for the stochastic equation is defined and the theorem of its existence and uniqueness is stated. For the case of the linear equation the explicit formula for the solution is derived as well as the equations for its expected value and variance. The last part is the analysis of selected equations.
Brownian motion, Itô's formula, Itô's integral, Stochastic ordinary differential equations
Date of defence
25.06.2015
Result of the defence
Defended (thesis was successfully defended)
Grading
B
Language of thesis
English
Faculty
Fakulta strojního inženýrství
Department
Institute of Mathematics
Study programme
Applied Sciences in Engineering (N3901-2)
Field of study
Mathematical Engineering (M-MAI)
Composition of Committee
prof. RNDr. Jan Chvalina, DrSc. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. RNDr. Bohumil Maroš, CSc. (člen) doc. RNDr. Libor Čermák, CSc. (člen) doc. Ing. Luděk Nechvátal, Ph.D. (člen) prof. Bruno Rubino (člen)
Supervisor’s reportprof. RNDr. Jan Franců, CSc.
Grade proposed by supervisor: B
Reviewer’s reportdoc. RNDr. Edita Kolářová, Ph.D.
Grade proposed by reviewer: B
Responsibility: Mgr. et Mgr. Hana Odstrčilová