Přístupnostní navigace
E-application
Search Search Close
Master's Thesis
Author of thesis: Ing. Jan Klíma
Acad. year: 2024/2025
Supervisor: Ing. Michal Urbánek, Ph.D.
Reviewer: Dr. Krzysztof Kacper Szulc
With the increasing popularity of quantum computing, there is a rising need to deal with systems operating in cryogenic environments, often incorporating superconducting materials. Hybrid systems utilizing spin waves at cryogenic temperatures could benefit from increased conversion efficiency of electrical and magnonic signals and enable a new class of tunable devices, changing their functionality upon crossing the critical temperature of the superconductors involved. This work focuses on upgrading a standard cryostat setup with the possibility to measure microwave signals, which allows us to study magnetization dynamics and spin waves at low temperatures. The measurement setup is then used to study ferromagnetic systems incorporating superconducting niobium structures in a broad temperature and magnetic field range. Special care is also devoted to the theoretical description of the spin waves in the ferromagnet-superconductor heterostructures. The experimental part of this study employs resistivity measurements to characterize the superconducting properties of thin Nb films and their change when a (ferromagnetic) permalloy layer is placed on top. Characterization of temperature-dependent properties of the magnetic materials is achieved by vector network analysis of ferromagnetic resonance, while the spin wave behaviour is measured by propagating spin-wave spectroscopy. The developed setup opens a wide range of possibilities in characterization of superconducting and magnetic properties of magnetic, superconducting, and hybrid materials and materials systems. A pilot experiment showing enhanced excitation of spin waves by superconducting antennas is presented in the last chapter of this thesis.
magnonics, spin waves, propagating spin wave spectroscopy, superconductivity, electronic transport, ferromagnetic resonance
Date of defence
09.06.2025
Result of the defence
Defended (thesis was successfully defended)
Grading
A
Process of defence
Po otázkách oponenta bylo dále diskutováno: Možná aplikace tohoto anizotropního jevu. Jak velké projevy anizotropie lze očekávat. Frekvenční limity spinových vln. Student na otázky odpověděl.
Language of thesis
English
Faculty
Fakulta strojního inženýrství
Department
Institute of Physical Engineering
Study programme
Physical Engineering and Nanotechnology (N-FIN-P)
Composition of Committee
prof. RNDr. Tomáš Šikola, CSc. (předseda) prof. RNDr. Jiří Spousta, Ph.D. (místopředseda) prof. RNDr. Pavel Zemánek, Ph.D. (člen) prof. Mgr. Dominik Munzar, Dr. (člen) doc. Mgr. Adam Dubroka, Ph.D. (člen) prof. RNDr. Petr Dub, CSc. (člen) prof. Ing. Jan Čechal, Ph.D. (člen) prof. RNDr. Jiří Petráček, Dr. (člen) prof. RNDr. Radim Chmelík, Ph.D. (člen) prof. Ing. Miroslav Kolíbal, Ph.D. (člen) doc. Ing. Radek Kalousek, Ph.D. (člen) doc. Ing. Stanislav Průša, Ph.D. (člen) doc. Mgr. Vlastimil Křápek, Ph.D. (člen) RNDr. Antonín Fejfar, CSc. (člen)
Supervisor’s reportIng. Michal Urbánek, Ph.D.
Grade proposed by supervisor: A
Reviewer’s reportDr. Krzysztof Kacper Szulc
Grade proposed by reviewer: A
Responsibility: Mgr. et Mgr. Hana Odstrčilová