Doctoral Thesis

Towards highly-doped Ge and ZnO nanowires: Growth, characterization and doping level analysis

Final Thesis 9.88 MB Summary of Thesis 3.77 MB

Author of thesis: Ing. Tomáš Pejchal, Ph.D.

Acad. year: 2021/2022

Supervisor: prof. Ing. Miroslav Kolíbal, Ph.D.

Reviewers: doc. RNDr. Petr Mikulík, Ph.D., Ing. Jan Grym, Ph.D.

Abstract:

Highly-doped semiconductor nanowires represent a promising class of nanostructures with prospective applications in electronics, optoelectronics or bio-sensing. This thesis is focused on the growth and in-depth characterization of germanium and zinc oxide nanowires, with the aim of acquiring high doping levels.

The first part of the thesis deals with the growth of germanium nanowires via the vapour–liquid–solid (VLS) process. Several factors impacting the nanowire growth and morphology are described – the composition of the catalytic particle, the role of surface adsorbates and the incorporation of atoms from the catalyst into the nanowire. The nanowires are grown from gold nanoparticles either in ultra-high vacuum (the MBE-like process) or in the presence of atomic-hydrogen vapour (mimicking the CVD process), resulting in dissimilar nanowire morphology and growth direction. The combined effect of atomic hydrogen adsorption and gold catalyst spreading is revealed – being the key element explaining the difference in nanowire morphology when MBE and CVD growth techniques are utilised.

Further, the Ge nanowire growth from group-III-containing catalysts is studied, with the intention of doping the nanowires via the incorporation of atoms from the catalyst droplet. The in-situ prepared alloyed Au–Ga catalyst is found to be applicable for germanium out-of-plane nanowire growth – although the catalyst stability is lower than for pure Au. Despite a high dopant concentration in the catalyst, no gallium incorporation into the nanowire is observed. Hence, this method of nanowire doping is proved unsuitable for the material system selected.

The third part of the thesis covers the characterization of ZnO nanowires and the development of a protocol for their diffusional doping with gallium. The impact of nanowire annealing on the concentration of oxygen vacancies (VO) is demonstrated – annealing in H2O2 gas decreases the VO concentration, compared with annealing in high vacuum. Further, Ga incorporation into ZnO nanowires is documented with in-situ SEM when annealed above 350 °C. Moreover, gallium-induced decomposition of ZnO nanowires is observed above 450 °C. The concentration and spatial distribution of Ga within the nanowires is assessed using STEM EDS and a theoretical model for Ga diffusion. The correlation between the VO concentration and the Ga incorporation into ZnO is found. Gallium concentration in the order of 10^21 cm^-3 is reached in the nanowires – demonstrating the suitability of the presented diffusional-doping method for achieving high Ga doping levels needed for prospective bio-sensing applications in the IR region.

Keywords:

Nanowire, germanium, vapor−liquid−solid growth, faceting, hydrogen, zinc oxide, doping, diffusion.

Date of defence

01.03.2022

Result of the defence

Defended (thesis was successfully defended)

znamkaPznamka

Process of defence

Disertační práce Ing. Tomáše Pejchala se věnuje růstu, dopování a charakterizaci nanodrátů materiálů Ge a ZnO. Toto téma je aktuální, studium těchto povolodičů s pásovou strukturou řízenou sycením galiem přináší nové poznatky pro aplikaci nanostruktur v oblasti mikroelektroniky. Cíle disertační práce byly jednoznačně formulovány v úvodu práce a byly splněny. Disertační práce je psána anglicky, má 103 stran textu a obsahuje 157 citací. Typografická i jazyková úroveň je výborná. Doktorand prokázal tvůrčí schopnosti v oblasti materiálového výzkumu růstu a charakterizace nanostruktur a sepsaná práce splňuje požadavky standardně kladené na disertační práce v daném oboru. Disertační práce má návaznost na původní a uveřejněné výsledky a publikační činnost autora. V průběhu obhajoby Ing. Pejchal přesvědčivě prokázal svou vysokou odbornost v dané oblasti výzkumu. Své výsledky prezentoval v angličtině a na dotazy oponentů a členů komise odpověděl výborně.

Language of thesis

English

Faculty

Department

Study programme

Advanced Materials and Nanosciences (STIPMNK)

Field of study

Advanced nanotechnologies and microtechnologies (PNTMT)

Composition of Committee

prof. RNDr. Radim Chmelík, Ph.D. (předseda)
prof. RNDr. Jiří Spousta, Ph.D. (místopředseda)
doc. Ing. Stanislav Průša, Ph.D. (člen)
doc. RNDr. Petr Mikulík, Ph.D. (člen)
Ing. Jan Grym, Ph.D. (člen)
Dr.techn. Ing. Hermann Detz (člen)

viz posudek v pdf.
File inserted by supervisor Size
Posudek vedoucího práce [.pdf] 1,34 MB

Reviewer’s report
doc. RNDr. Petr Mikulík, Ph.D.

viz posudek v pdf,
File inserted by the reviewer Size
Posudek oponenta [.pdf] 58,35 kB

Reviewer’s report
Ing. Jan Grym, Ph.D.

viz posudek v pdf.
File inserted by the reviewer Size
Posudek oponenta [.pdf] 181,06 kB

Responsibility: Mgr. et Mgr. Hana Odstrčilová