Course detail
Optical Communication Fundamentals and Optoelectronics
FEKT-COPEAcad. year: 2010/2011
Radiometry and Photometry. Laser safety in the optoelectronic laboratory (medicine, hygienic and metrological aspects). Wave optics: interference, coherence, diffraction and holography. Optical resonators, Gaussian characteristics of the laser beam. Fundamentals of lasers. Semiconductor optoelectronics: laser diodes, LEDs, PIN and avalanche photodiodes. Fiber optics. Optical links.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Optical spectrum and characteristics of radiation
Interferometry and optical interferometers
Diffraction, holograpfy and thermograms
Optical components and their characteristics
Lasers and laser diodes
LED and photodiodes
Sensors and displays
Fiber optics
Fiber links
Optical wireless links
Lidars and laser radars
Future of the optoelectronics
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Optical spectrum and characteristics of radiation
Interferometry and optical interferometers
Diffraction, holography and thermograms
Optical components and their characteristics
Lasers and laser diodes
LED and photodiodes
Sensors and displays
Fiber optics
Fiber links
Optical wireless links
Lidars and laser radars
Future of the optoelectronics
Laboratory exercise
Teacher / Lecturer
Syllabus
Measurement of response and linearity of optical receiver
Measurement of numerical aperture and attenuation of fibre
Measurement of qualitative parameters of optical link
Computer modeling of link budget