Course detail
Mathematics I
FAST-GA01Acad. year: 2009/2010
Geometrical vectors in three dimensional Euclidean space, operations with vectors. Applications of vector calculus in spherical trigonometry. Vector space, base, dimension, coordinates of a vector. Application of vector calculus in analytic geometry.
Linear algebra (basis of matric calculus, rank of a matrix, solution of linear systems by Gauss method of elimination). Inverse matrix, determinants. Eigenvalues and eigenvectors of a matrix. Real function of a one real variable, limit and continuity of a function (basic notions and properties), derivative of a function (geometrical and physical meaning, calculus of derivation, basic theorems on derivatives, higher order derivatives, behavior of a function, differentials of a function, Taylor polynomials).
Primitive function, indefinite integrals, properties of indefinite integrals, overview of basic indefinite integrals, methods of integration.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Bringing off basic differential calculus will permit successfully analyse problems of behavior of analytical curves.
Prerequisites
Znát pojem geometrického vektoru a základy analytické geometrie ve třírozměrném euklidovském prostoru (parametrické rovnice přímky, obecná rovnice roviny, skalární součin vektorů a jeho použití při řešení metrických a polohových úloh). Umět určovat typy a základní prvky kuželoseček, kreslit jejich grafy.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Applications of vector calculus in spherical trigonometry.
3. Vector space, base, dimension, coordinates of a vector.
4. Application of vector calculus in analytic geometry.
5. Matrices, systems of linear algebraic equations, Gaussian elimination method.
6. Inverse matrix, determinants.
7. Eigenvalues and eigenvectors of a matrix.
8. Real function of a one real variable, explicit and parametric expression of a function. Basic properties of functions. Composite fuction and inverse function. Elementary functions (including inverse trigonometric functions and hyperbolic functions).
9. Polynomials and rational functions.
10. Sequences and theirs limits, limit and continuity of a function.
11. Derivative of a function, its geometrical and physical meaning, derivation rules. Derivative of a composite function and of an inverse function. Derivatives of elementary functions.
12. Derivatives of higher order, geometrical meaning of first order and second order derivatives for investigation of behavior of a function, l Hospitals rule, asymptotes.
13. Properties of function, continuous on an interval. Basic theorems of differential calculus (Rolles theorem, Lagranges theorem). Differential of a function. Taylors theorem. Derivative of a function given in a parametric form. Notion of a primitive function, Newtons integral, its properties and computation. Definition of Riemann integral. -
Integration methods for indefinite and definite integrals.
Work placements
Aims
They should be able to compute with matrices, perform elementary transactions, and calculate determinants, solve systems of linear algebraic equations by Gauss elimination method.
Pochopit základní pojmy diferenciálního počtu funkce jedné proměnné a geometrické interpretace některých pojmů. Zvládnout derivování a naučit se řešit úlohu průběhu funkce.
They should understand the principles of integration of elementary functions.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Dlouhý, O., Tryhuk, V.: Diferenciální počet funkce jedné reálné proměnné. FAST, 2008. (CS)
Dlouhý O., Tryhuk V.: Diferenciální počet I, Derivace funkce. FAST - studijní opora v intranetu, 2005. (CS)
Larson R., Hostetler R.P., Edwards B.H.: Calculus (with Analytic Geometry). Brooks Cole, 2005. (EN)
Novotný, J.: Základy lineární algebry. FAST - studijní opora v intranetu i tištěné texty, 2005. (CS)
Tryhuk, V., Dlouhý, O.: Vektorový počet a jeho aplikace. FAST - studijní opora v intranetu, 2005. (CS)
Recommended reading
Classification of course in study plans