Course detail

Additive Technologies in Foundries

FSI-PTSAcad. year: 2026/2027

The course introduces students to basic approaches to data processing for models produced by the rapid prototyping (RP) method. They acquire basic knowledge of RP principles, including an overview of additive manufacturing (AM) methods applicable in foundry technology. They gain hands-on experience using AM for prototyping. The subject includes hybrid technologies, computer support for the production of molds and models, including quality control methodology and the economics of producing prototype castings.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Basic knowledge of foundry technology. Basic knowledge of material engineering and construction. Basics of work in CAD.

Rules for evaluation and completion of the course

The credit is given for an active participation in seminars. The examination consists of a list of questions summarizing the topics covered. It is an oral examination with written preparation
Participation in lectures is recommended. Participation in seminars is compulsory. Comprehension is checked in seminars. The tutor gives the students individual tasks. Missed classes need to be discussed with the guarantor.

Aims

The course is focused on acquiring knowledge of 3D data preparation using 3D scanning and reverse engineering techniques. Students will become familiar with the fundamental principles and methods of Rapid Prototyping (RP) technologies, including 3D printing and direct or indirect manufacturing using various additive manufacturing methods, with an emphasis on applications in casting technology. The course emphasizes both 3D printing methods and the material characteristics associated with the production of models and casting molds, which affect the quality of the final castings. Students will gain knowledge of pre-processing, processing, and post-processing of printed components and understand their impact on the quality of cast parts. The course also covers the application of Industry 4.0 principles in managing production processes and optimizing manufacturing.

Study aids

The materials will be accessible through e-learning.

Prerequisites and corequisites

Not applicable.

Basic literature

BOLONO, F., ODORIZZI, S. Numerical simulation of Foundry Processes, Program Leonardo da Vinci, 2001 (CS)
CAMPBELL, J. Casting, Butterworth-Heinemann, Oxford, 2000, ISBN 0 7506 1696 2. (CS)
FORD, S., MINSHALL, T. Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing. Volume 25, January 2019, Pages 13 -150. https://doi.org/10.1016/j.addma.2018.10.028 (CS)
GIBSON, I., D. W. ROSEN a B. STUCKER. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. New York: Springer, c2010. ISBN 1441911200 (CS)
Herman, A. a kol. Počítačové simulace ve slévárenství, Vydavatelství ČVUT, 2000 (CS)
KAUFMAN, H. UGGOWITZER, P. J. Metalurgy and Processing of High-Integrity Light Metal Pressure Castings. Schiele-Schön, 2007, Berlin. ISBN 3-7949-0754-X (CS)
MITCHELL, A. LAFONT, U., HOŁYŃSKA, M.,SEMPRIMOSCHNIG, C. Additive manufacturing - A review of 4D printing and future applications. Additive Manufacturing, Volume 24, December 2018, Pages 606-626. https://doi.org/10.1016/j.addma.2018.10.038 (CS)
WANG, W., STAL, H. W., CONLEY, J. G. Rapid Tooling Guidelines For Sand Casting, Springer, 2010 ISBN 978-1-4419-5730-6. (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-SLE-P Master's 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Foundry production – division of production technologies, technological nature of construction.
  2. Design for manufactuing  + Stress in castings.
  3. CAD modeling – principles, methods and tools for creating 3D model drawings for RP methods and numerical simulation.
  4. Optimization of casting construction – topological optimization, generative design.
  5. Industry 4.0 – new technological challenges.
  6. Reverse engineering methods.
  7. Methods of 3D scanning and image processing.
  8. Additive technology - division, principles of individual methods.
  9. Additive production of foundry models.
  10. Additive production of metal materials.
  11. RP methods suitable for foundry practice, examples of use, achievable parameters.
  12. Post-processing of models for RP, surface treatment of molds for selected modern technologies.
  13. Case studies, examples from practice.

Laboratory exercise

39 hod., compulsory

Teacher / Lecturer

Syllabus

1. - 3. Making 3D casting models and patterns using Solid Works software.
4. - 5. Model preparation for 3D printing - slicer.
6. - 8. 3D printing of selected projects.
8. - 12. Ceramic shell making, prototype pouring
13. Quality control of castings, evaluation.