Course detail

Methods of Structure Analysis

CEITEC VUT-DS145Acad. year: 2024/2025

The course covers the folowing topics (with various degree of detail):
light microscopy, image analysis, laser scanning confocal microscopy (CLSM), common elements and functional blocks of electron microscopes, electron-matter interaction, scanning electron microscopy (SEM), special techniques in SEM, overview of methods of local chemical composition analysis, energy-dispersive spectroscopy (EDS), wave-dispersive spectroscopy (WDS), X-ray fluoerescence (XRF) and micro-XRF, cathodoluminescence spectroscopy (CL), electron backscatter difraction (EBSD), focused ion beam microscopy (FIB), transmission electron microscopy and scanning transmission electron microscopy (TEM,STEM), sample preparation techniques for SEM and TEM, diffraction- and scattering-based techniques utilizing X-rays 

Language of instruction

Czech

Mode of study

Not applicable.

Entry knowledge

Requirements on previous knowledge is: physics basics (mechanics, electricity, magnetism and basics of quantum theory) and mathematics (differential, integral and matrix calculus, statistics) as provided during BSc studies. Further, the knowledge on solid matter physics and crystallography is required (crystal systems/lattices, reciprocal space, kinematic and dynamic diffraction theory, pole figure, basic stereographic triangle). 

Rules for evaluation and completion of the course

The subject is concluded by an exam. The exam consists of mandatory written part and may be extended by oral one. The course-unit credit is granted under condition of elaboration of the assignments based on the practical lessons' topics.
Attendance at practical lessons is compulsory. Absence from classes is dealt with individually, usually by make-up exercises. 

Aims

The course objective is to offer the students an overview and also the theoretical knowledge on principles of all basic methods of analysis of structure and phase composition of materials, including necessary sample preparation techniques. Based on practical demonstrations, the students will gain basic overview of procedures and methods used to solve problems and analysing results.

After concluding the course, the student should be able to select appropriate analytical techniqe to solve practical problems in materials' engineering.

 

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ECKERTOVÁ, Ludmila a Luděk FRANK. Metody analýzy povrchů: elektronová mikroskopie a difrakce. Praha: Academia, 1996, 379 s. ISBN 80-200-0329-0. (CS) (CS)
FLEWITT, P. E. J a Robert K WILD. Physical methods for materials characterisation. Bristol: Institute of Physics Publishing, 1994, xvi, 517 p. : il. ISBN 0-7503-0320-4.ProQuest Ebook Central (EN) (CS)
FRANK, Luděk a Jaroslav KRÁL. Metody analýzy povrchů: iontové, sondové a speciální metody. Praha: Academia, 2002, 489 s. ISBN 80-200-0594-3. (CS) (CS)
GOLDSTEIN, I. Joseph. Scanning electron microscopy and X-ray microanalysis. 3rd ed. New York: Kluwer, 2003, xix, 689 s. : il. + 1 CD-ROM. ISBN 0-306-47292-9. (EN) (CS)
KARLÍK, Miroslav. Úvod do transmisní elektronové mikroskopie. Praha: České vysoké učení technické v Praze, 2011, 321 s. : il. (některé barev.) ; 30 cm. ISBN 978-80-01-04729-3. (CS) (CS)

Recommended reading

Not applicable.