Course detail

Charakterizace polovodičových součástek

FEKT-BPC-CPSAcad. year: 2025/2026

The course focuses on both theoretical and practical characterization of semiconductor devices using modern measurement techniques and the LabVIEW environment for automated data acquisition, control, and evaluation. A key part of the course is the modeling of device electrical behavior, including basic SPICE models, analysis of temperature effects and recovery behavior, and the calculation of key parameters.

Emphasis is placed on mastering the fundamental principles of measurement, designing and implementing measurement procedures, ensuring metrological reliability, and properly evaluating results, including uncertainty estimation in accordance with GUM (Guide to the Expression of Uncertainty in Measurement).

In the practical part of the course, students will gradually become familiar with instrument communication, the creation of measurement applications in LabVIEW, processing and interpreting acquired data, and designing custom measurement tasks. Laboratory exercises guide students from the basics of automated measurement and statistical data evaluation to the independent design and implementation of a measurement system. The course concludes with the presentation of an individual project that integrates both theoretical and practical knowledge in the field of semiconductor device characterization.

 

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Basic knowledge of physics, mathematics and electrical circuits is required. Completion of BPC-ESO and BPC-EL1 is a mandatory prerequisite. 

Work in the laboratory is subject to a valid qualification of "instructed person", which students must obtain before starting classes. Information on this qualification can be found in the Dean's Directive Acquainting Students with Safety Regulations. 

Rules for evaluation and completion of the course

Credit conditions: completion of measured tasks and handing in prepared protocols in the required quality.

Exam conditions: proof of knowledge of the subject in the written and oral parts of the exam.

Point evaluation (max. 100 points): max. 30 points for work during the semester; max. 70 points per exam. The final exam consists of two parts (written and oral) and is evaluated for a total of 70 points. 

Aims

      To introduce students to the principles of electrical characterization of semiconductor devices, particularly diodes and transistors, including both static and dynamic parameters.

      To develop practical skills in automated measurement through hands-on experience with laboratory instruments and their control using the LabVIEW environment.

      To teach students how to design and implement measurement procedures, including the selection of operating conditions, biasing, and measurement ranges.

      To strengthen the understanding of basic device models and their use in the interpretation of measurement results, including the application of simple models in SPICE simulations.

      To acquire the fundamentals of metrology and the methodology for estimating measurement uncertainty, with emphasis on proper evaluation and documentation according to GUM (Guide to the Expression of Uncertainty in Measurement).

      To develop the ability to process and visualize measured data, including the application of statistical methods to improve measurement accuracy and repeatability.

      To foster independent technical work and the ability to present results, through the design, implementation, and defense of an individual measurement project.

       

      Study aids

      https://www.dps-az.cz/clanky/id:22208/nove-v-e-archivu-zaklady-labview 

      https://www.youtube.com/watch?v=P8y3tKJQadE 

      https://www.youtube.com/watch?v=joilU9m-sNk 

      https://ww2.mathworks.cn/en/videos/getting-started-with-matlab-1564521672719.html 

      https://ww2.mathworks.cn/en/videos/matlab-tools-for-test-and-measurement-81553.html 

      Prerequisites and corequisites

      Not applicable.

      Basic literature

      Boušek J., Kosina P., Mojrova B.: Elektronické součástky, FEKT VUT V BRNĚ, elektronické skriptum (CS)
      Jennings, Richard. LabVIEW Graphical Programming. New York, N.Y., McGraw-Hill Education, 2020. (EN)
      Vlach J., Havlíček J., Vlach M.: Začínáme s LabVIEW. Praha: BEN - technická literatura, 2008. ISBN 978-80-7300-245-9. (CS)
      Zaplatílek K.: MATLAB® pro začínající uživatele. Knihovnicka.cz. Brno: Tribun EU, 2020. ISBN 978-80-263-1589-6. (CS)

      Recommended reading

      Not applicable.

      Classification of course in study plans

      • Programme BPC-NCP Bachelor's 2 year of study, summer semester, compulsory

      Type of course unit

       

      Lecture

      26 hod., optionally

      Teacher / Lecturer

      Syllabus

      1. Úvod do charakterizace polovodičových prvků, význam a aplikace.

      2. Fyzikální principy součástek (PN přechod, tranzistorové struktury, Si/SiC/GaN).

      3. Elektrické charakteristiky (statické I–V, C–V, switching) a základní měřené veličiny (proud, napětí,  výkon, teplota, parazitní jevy).

      4. Statická a dynamická měření (I–V, pulzní měření, reverse recovery, gate charge).

      5. Měřicí aparatura, kalibrace, vliv šumu, termální stabilizace a parazitních prvků.

      6. Teorie chyb: systematické vs. náhodné, typ A / typ B, zdroje nejistot.

      7. Kombinovaná nejistota, Gaussovo šíření, interval spolehlivosti, pravděpodobnostní přístup.

      8. Validace měření, opakovatelnost, reprodukovatelnost, metrologická návaznost a normy (IEC, JEDEC).

      9. Koncept instrumentace a komunikace s přístroji (VISA, GPIB, USB, Ethernet, SCPI).

      10. Základy LabVIEW (blokové programování, struktury, smyčky, grafy a vizualizace).

      11. Návrh, implementace a ladění automatizovaných měřicích úloh, logování a archivace dat.

      12. Import, filtrace a statistické zpracování naměřených dat; regrese, fitování křivek, metoda nejmenších čtverců.

      13. Vyhodnocení nejistot z experimentu, identifikace anomálních dat, šumová analýza, extrakce parametrů SPICE modelů a porovnání měření se simulací.

       

      Exercise in computer lab

      13 hod., compulsory

      Teacher / Lecturer

      Syllabus

      Automated Measurement: Instrument Setup and Communication with PC;

      Introduction to LabVIEW: Variables, Loops, and Data Storage;

      Design and Implementation of Resistance Measurement in LabVIEW: Repeated Measurement and Statistics;

      Design of Diode I-V Characteristic Measurement in LabVIEW;

      Project: Custom Design of R<sub>DS(on)</sub> Measurement for MOSFET – Part I;

      Project: Custom Design of R<sub>DS(on)</sub> Measurement for MOSFET – Part II;

       

      Laboratory exercise

      13 hod., compulsory

      Teacher / Lecturer

      Syllabus

      Automated Measurement: Instrument Setup and Communication with PC;

      Introduction to LabVIEW: Variables, Loops, and Data Storage;

      Design and Implementation of Resistance Measurement in LabVIEW: Repeated Measurement and Statistics;

      Design of Diode I-V Characteristic Measurement in LabVIEW;

      Project: Custom Design of R<sub>DS(on)</sub> Measurement for MOSFET – Part I;

      Project: Custom Design of R<sub>DS(on)</sub> Measurement for MOSFET – Part II;