Course detail
Mathematics 2
FAST-DAB040Acad. year: 2024/2025
Mathematical approaches to the analysis of engineering problems, namely ordinary and partial differential equations, directed to numerical calculations - deeper knowledge than from the course DA01.
Language of instruction
Czech
Number of ECTS credits
10
Mode of study
Not applicable.
Guarantor
Department
Institute of Mathematics and Descriptive Geometry (MAT)
Entry knowledge
At the level of the course DA01.
Rules for evaluation and completion of the course
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Aims
Not applicable.
Study aids
Not applicable.
Prerequisites and corequisites
Not applicable.
Basic literature
Not applicable.
Recommended reading
Not applicable.
Classification of course in study plans
- Programme DKA-GK Doctoral 2 year of study, winter semester, compulsory-optional
- Programme DPA-GK Doctoral 2 year of study, winter semester, compulsory-optional
- Programme DPC-GK Doctoral 2 year of study, winter semester, compulsory-optional
- Programme DPC-GK Doctoral 2 year of study, winter semester, compulsory-optional
Type of course unit
Lecture
39 hod., optionally
Teacher / Lecturer
Syllabus
- 1. Formulation of the initial-value problem for ordinary differential equations of degree 1, basic properties, existence and uniqueness of solutions.
- 2. Basic numerical methods for the initial-value problems and their absolute stability.
- 3. Introduction to the variational calculus, basic spaces of integrable functions.
- 4. Classical and variational formulations of elliptic problems for ordinary differential equations of degree 2, basic physical meanings.
- 5. Standard finite difference method for elliptic problems for ordinary differential equations (ODE) of degree 2 and its stable modifications.
- 6. Approximation of boundary-value problems for ODE of degree 2 by the finite element method.
- 7. Classical and variational formulation of elliptic problems for ODE od degree 4 and approximation by the finite element method.
- 8. Classical and variational formulation of elliptic problems for partial differential equations od degree 2.
- 9. Finite element method for elliptic problems for partial differential equations od degree 2.
- 10. Finite volume method.
- 11. Discretization of non-stationary problems for degree 2 differential equations by the method of lines.
- 12. Mathematical models of flow. Nonlinear problems and problems with dominating convection.
- 13. Numerical methods for the models of flow.