Course detail

Building Physics 1

FAST-BHA044Acad. year: 2024/2025

Proper design of thermal technical properties of building structures, rooms and buildings ensures the prevention of thermal defects and failures, ensuring the desired state of the internal environment and low energy performance of buildings. In addition thermal microclimate can be optimized design of the structure and the doors and windows to ensure a desired humidity microclimate.

Language of instruction


Number of ECTS credits


Mode of study

Not applicable.


Institute of Building Structures (PST)

Entry knowledge

Basic knowledge of mathematics, knowledge of the fundamental physical constants and thermal properties of building materials.

Rules for evaluation and completion of the course

Extent and forms are specified by guarantor’s regulation updated for every academic year.


Construction must be design for and adjudicate so that not happen to rise of the heat technical deficienty or dificiency. Must be fulfil requirements of regulations and from the viewpoint of the thermal cover of buildings and must be securing of low energy costingness of designing building and requisite thermal microclimate.

By attending the course the students will learn the basics of building desing with respect to given standards and regulations, to meet indoor comfort conditions. The will be taught how to assure low-energy demands of a given building by proper thermal desing of the boundary and divisionary construction, and how to eliminate the possibilities of failures and defects.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ČSN 73 0540-1 až 4 Tepelná ochrana budov. ČNI Praha.


Vaverka, J., a kol.: Stavební tepelná technika a energetika budov. VUTIUM, VUT v Brně, 2006.


Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BPC-APS Bachelor's, 3. year of study, winter semester, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer


1. Fundamentals in heat transfer. Thermal comfort in buildings. 2. Steady state heat flux, U-value determination. 3. Temperature profile for steady state conditions. 4. Influence of a reflective (aluminium) foil on U-value of the structure with non-ventilated air cavity. 5. Surface properties, risk of a surface condensation and mould grows, critical surface temperature and humidity, dew point temperature. 6. Thermal properties of windows and doors. 7. Two dimensional temperature profile of characteristic details (critical places in structures - thermal bridges and corners). 8. Assessment and determination of condensation regions into structures, additional protection against vapour and moisture. 9. Annual balance of condensated and evaporated amounts in the structure. 10. Non-steady state heat flux. 11. Floor categories, surface temperature drop. 12. Thermal stability of rooms. 13. Energy efficiency and energy consumption in buildings.